--- language: - fa license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large Fa results: [] --- # Whisper Large Fa This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 52.3497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1999 | 0.43 | 1000 | 0.3631 | 55.5243 | | 0.1391 | 0.86 | 2000 | 0.2965 | 47.4574 | | 0.0719 | 1.29 | 3000 | 0.2725 | 54.5863 | | 0.0611 | 1.72 | 4000 | 0.2511 | 52.3497 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0