--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - Wer: 5.5491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4119 | 0.38 | 30 | 0.1653 | 7.8245 | | 0.1737 | 0.75 | 60 | 0.1446 | 5.7271 | | 0.1437 | 1.12 | 90 | 0.1420 | 6.7487 | | 0.0785 | 1.5 | 120 | 0.1317 | 5.1931 | | 0.0707 | 1.88 | 150 | 0.1309 | 6.2379 | | 0.0496 | 2.25 | 180 | 0.1369 | 5.9670 | | 0.0318 | 2.62 | 210 | 0.1316 | 6.0367 | | 0.0341 | 3.0 | 240 | 0.1290 | 5.5568 | | 0.0166 | 3.38 | 270 | 0.1339 | 4.9532 | | 0.0147 | 3.75 | 300 | 0.1353 | 5.4949 | | 0.0109 | 4.12 | 330 | 0.1365 | 5.6342 | | 0.0072 | 4.5 | 360 | 0.1402 | 5.4640 | | 0.0071 | 4.88 | 390 | 0.1401 | 5.5491 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0