Pipeline files
Browse files- model_index.json +12 -0
- modeling_ddpm.py +60 -0
- scheduler_config.json +8 -0
model_index.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDPMPipeline",
|
3 |
+
"_module": "modeling_ddpm.py",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"DDPMScheduler"
|
7 |
+
],
|
8 |
+
"unet": [
|
9 |
+
"diffusers",
|
10 |
+
"UNetUnconditionalModel"
|
11 |
+
]
|
12 |
+
}
|
modeling_ddpm.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from diffusers import DiffusionPipeline
|
18 |
+
import tqdm
|
19 |
+
import torch
|
20 |
+
|
21 |
+
|
22 |
+
class DDPM(DiffusionPipeline):
|
23 |
+
|
24 |
+
modeling_file = "modeling_ddpm.py"
|
25 |
+
|
26 |
+
def __init__(self, unet, noise_scheduler):
|
27 |
+
super().__init__()
|
28 |
+
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
|
29 |
+
|
30 |
+
def __call__(self, generator=None, torch_device=None):
|
31 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
|
33 |
+
self.unet.to(torch_device)
|
34 |
+
# 1. Sample gaussian noise
|
35 |
+
image = self.noise_scheduler.sample_noise((1, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)
|
36 |
+
for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
|
37 |
+
# i) define coefficients for time step t
|
38 |
+
clip_image_coeff = 1 / torch.sqrt(self.noise_scheduler.get_alpha_prod(t))
|
39 |
+
clip_noise_coeff = torch.sqrt(1 / self.noise_scheduler.get_alpha_prod(t) - 1)
|
40 |
+
image_coeff = (1 - self.noise_scheduler.get_alpha_prod(t - 1)) * torch.sqrt(self.noise_scheduler.get_alpha(t)) / (1 - self.noise_scheduler.get_alpha_prod(t))
|
41 |
+
clip_coeff = torch.sqrt(self.noise_scheduler.get_alpha_prod(t - 1)) * self.noise_scheduler.get_beta(t) / (1 - self.noise_scheduler.get_alpha_prod(t))
|
42 |
+
|
43 |
+
# ii) predict noise residual
|
44 |
+
with torch.no_grad():
|
45 |
+
noise_residual = self.unet(image, t)
|
46 |
+
|
47 |
+
# iii) compute predicted image from residual
|
48 |
+
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
49 |
+
pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
|
50 |
+
pred_mean = torch.clamp(pred_mean, -1, 1)
|
51 |
+
prev_image = clip_coeff * pred_mean + image_coeff * image
|
52 |
+
|
53 |
+
# iv) sample variance
|
54 |
+
prev_variance = self.noise_scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
|
55 |
+
|
56 |
+
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
57 |
+
sampled_prev_image = prev_image + prev_variance
|
58 |
+
image = sampled_prev_image
|
59 |
+
|
60 |
+
return image
|
scheduler_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "GaussianDDPMScheduler",
|
3 |
+
"beta_end": 0.02,
|
4 |
+
"beta_schedule": "linear",
|
5 |
+
"beta_start": 0.0001,
|
6 |
+
"timesteps": 1000,
|
7 |
+
"variance_type": "fixed_large"
|
8 |
+
}
|