Update README.md
Browse files
README.md
CHANGED
@@ -64,10 +64,22 @@ language:
|
|
64 |
widget:
|
65 |
- text: "Translate to German: My name is Arthur"
|
66 |
example_title: "Translation"
|
67 |
-
- text: "Please answer to the following question. Who is going to be the next
|
68 |
example_title: "Question Answering"
|
69 |
-
- text: "
|
70 |
-
example_title: "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
tags:
|
73 |
- text2text-generation
|
@@ -142,8 +154,8 @@ Find below some example scripts on how to use the model in `transformers`:
|
|
142 |
|
143 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
144 |
|
145 |
-
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-
|
146 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-
|
147 |
|
148 |
input_text = "translate English to German: How old are you?"
|
149 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids
|
@@ -163,8 +175,8 @@ print(tokenizer.decode(outputs[0]))
|
|
163 |
# pip install accelerate
|
164 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
165 |
|
166 |
-
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-
|
167 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-
|
168 |
|
169 |
input_text = "translate English to German: How old are you?"
|
170 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
@@ -187,8 +199,8 @@ print(tokenizer.decode(outputs[0]))
|
|
187 |
import torch
|
188 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
189 |
|
190 |
-
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-
|
191 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-
|
192 |
|
193 |
input_text = "translate English to German: How old are you?"
|
194 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
@@ -208,8 +220,8 @@ print(tokenizer.decode(outputs[0]))
|
|
208 |
# pip install bitsandbytes accelerate
|
209 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
210 |
|
211 |
-
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-
|
212 |
-
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-
|
213 |
|
214 |
input_text = "translate English to German: How old are you?"
|
215 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
@@ -280,7 +292,7 @@ For full details, please check the [research paper](https://arxiv.org/pdf/2210.1
|
|
280 |
|
281 |
## Results
|
282 |
|
283 |
-
For full results for FLAN-T5-
|
284 |
|
285 |
# Environmental Impact
|
286 |
|
|
|
64 |
widget:
|
65 |
- text: "Translate to German: My name is Arthur"
|
66 |
example_title: "Translation"
|
67 |
+
- text: "Please answer to the following question. Who is going to be the next Ballon d'or?"
|
68 |
example_title: "Question Answering"
|
69 |
+
- text: "Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering."
|
70 |
+
example_title: "Logical reasoning"
|
71 |
+
- text: "Please answer the following question. What is the boiling point of Nitrogen?"
|
72 |
+
example_title: "Scientific knowledge"
|
73 |
+
- text: "Answer the following yes/no question. Can you write a whole Haiku in a single tweet?"
|
74 |
+
example_title: "Yes/no question"
|
75 |
+
- text: "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
|
76 |
+
example_title: "Reasoning task"
|
77 |
+
- text: "Q: ( False or not False or False ) is? A: Let's think step by step"
|
78 |
+
example_title: "Boolean Expressions"
|
79 |
+
- text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
|
80 |
+
example_title: "Math reasoning"
|
81 |
+
- text: "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"
|
82 |
+
example_title: "Premise and hypothesis"
|
83 |
|
84 |
tags:
|
85 |
- text2text-generation
|
|
|
154 |
|
155 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
156 |
|
157 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
|
158 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl")
|
159 |
|
160 |
input_text = "translate English to German: How old are you?"
|
161 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids
|
|
|
175 |
# pip install accelerate
|
176 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
177 |
|
178 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
|
179 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto")
|
180 |
|
181 |
input_text = "translate English to German: How old are you?"
|
182 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
|
|
199 |
import torch
|
200 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
201 |
|
202 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
|
203 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto", torch_dtype=torch.float16)
|
204 |
|
205 |
input_text = "translate English to German: How old are you?"
|
206 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
|
|
220 |
# pip install bitsandbytes accelerate
|
221 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
222 |
|
223 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
|
224 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto", load_in_8bit=True)
|
225 |
|
226 |
input_text = "translate English to German: How old are you?"
|
227 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")
|
|
|
292 |
|
293 |
## Results
|
294 |
|
295 |
+
For full results for FLAN-T5-XXL, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.
|
296 |
|
297 |
# Environmental Impact
|
298 |
|