File size: 9,037 Bytes
5e1c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
thumbnail: https://huggingface.co/front/thumbnails/google.png
license: apache-2.0
---
MuRIL: Multilingual Representations for Indian Languages
===
MuRIL is a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. We have released the pre-trained model (with the MLM layer intact, enabling masked word predictions) in this repository. We have also released the encoder on [TFHub](https://tfhub.dev/google/MuRIL/1) with an additional pre-processing module, that processes raw text into the expected input format for the encoder. You can find more details on MuRIL in this [paper](http://arxiv.org/abs/2103.10730).
## Overview
This model uses a BERT base architecture [1] pretrained from scratch using the
Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6]
Indian languages.
We use a training paradigm similar to multilingual bert, with a few
modifications as listed:
* We include translation and transliteration segment pairs in training as
well.
* We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to
enhance low-resource performance. [7]
See the Training section for more details.
## Training
The MuRIL model is pre-trained on monolingual segments as well as parallel
segments as detailed below :
* Monolingual Data : We make use of publicly available corpora from Wikipedia
and Common Crawl for 17 Indian languages.
* Parallel Data : We have two types of parallel data :
* Translated Data : We obtain translations of the above monolingual
corpora using the Google NMT pipeline. We feed translated segment pairs
as input. We also make use of the publicly available PMINDIA corpus.
* Transliterated Data : We obtain transliterations of Wikipedia using the
IndicTrans [8] library. We feed transliterated segment pairs as input.
We also make use of the publicly available Dakshina dataset.
We keep an exponent value of 0.3 to calculate duplication multiplier values for
upsampling of lower resourced languages and set dupe factors accordingly. Note,
we limit transliterated pairs to Wikipedia only.
The model was trained using a self-supervised masked language modeling task. We
do whole word masking with a maximum of 80 predictions. The model was trained
for 1000K steps, with a batch size of 4096, and a max sequence length of 512.
### Trainable parameters
All parameters in the module are trainable, and fine-tuning all parameters is
the recommended practice.
## Uses & Limitations
This model is intended to be used for a variety of downstream NLP tasks for
Indian languages. This model is trained on transliterated data as well, a
phenomomenon commonly observed in the Indian context. This model is not expected
to perform well on languages other than the ones used in pretraining, i.e. 17
Indian languages.
## Evaluation
We provide the results of fine-tuning this model on a set of downstream tasks.<br/>
We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/>
We also transliterate the test-sets and evaluate on the same.<br/>
We use the same fine-tuning setting as is used by [9], except for TyDiQA, where we use additional SQuAD v1.1 English training data, similar to [10].<br/>
For Tatoeba, we do not fine-tune the model, and use the pooled_output of the last layer as the sentence embedding.<br/>
All results are computed in a zero-shot setting, with English being the high resource training set language.
* Shown below are results on datasets from the XTREME benchmark (in %)
<br/>
PANX (F1) | ml | ta | te | en | bn | hi | mr | ur | Average
:-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 54.77 | 51.24 | 50.16 | 84.40 | 68.59 | 65.13 | 58.44 | 31.36 | 58.01
MuRIL | 75.74 | 71.86 | 64.99 | 84.43 | 85.97 | 78.09 | 74.63 | 85.07 | 77.60
<br/>
UDPOS (F1) | en | hi | mr | ta | te | ur | Average
:--------- | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 95.35 | 66.09 | 71.27 | 59.58 | 76.98 | 57.85 | 71.19
MuRIL | 95.55 | 64.47 | 82.95 | 62.57 | 85.63 | 58.93 | 75.02
<br/>
XNLI (Accuracy) | en | hi | ur | Average
:-------------- | ----: | ----: | ----: | ------:
mBERT | 81.72 | 60.52 | 58.20 | 66.81
MuRIL | 83.85 | 70.66 | 67.70 | 74.07
<br/>
Tatoeba (Accuracy) | ml | ta | te | bn | hi | mr | ur | Average
:----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 20.23 | 12.38 | 14.96 | 12.80 | 27.80 | 18.00 | 22.70 | 18.41
MuRIL | 26.35 | 36.81 | 17.52 | 20.20 | 31.50 | 26.60 | 17.10 | 25.15
<br/>
XQUAD (F1/EM) | en | hi | Average
:------------ | ----------: | ----------: | ----------:
mBERT | 83.85/72.86 | 58.46/43.53 | 71.15/58.19
MuRIL | 84.31/72.94 | 73.93/58.32 | 79.12/65.63
<br/>
MLQA (F1/EM) | en | hi | Average
:----------- | ----------: | ----------: | ----------:
mBERT | 80.39/67.30 | 50.28/35.18 | 65.34/51.24
MuRIL | 80.28/67.37 | 67.34/50.22 | 73.81/58.80
<br/>
TyDiQA (F1/EM) | en | bn | te | Average
:---------------- | ----------: | ----------: | ----------: | ----------:
mBERT | 75.21/65.00 | 60.62/45.13 | 53.55/44.54 | 63.13/51.66
MuRIL | 74.10/64.55 | 78.03/66.37 | 73.95/46.94 | 75.36/59.28
* Shown below are results on the transliterated versions of the above
test-sets.
PANX (F1) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average
:-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 7.53 | 1.04 | 8.24 | 41.77 | 25.46 | 8.34 | 7.30 | 14.24
MuRIL | 63.39 | 7.00 | 53.62 | 72.94 | 69.75 | 68.77 | 68.41 | 57.70
<br/>
UDPOS (F1) | hi_tr | mr_tr | ta_tr | te_tr | ur_tr | Average
:--------- | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 25.00 | 33.67 | 24.02 | 36.21 | 22.07 | 28.20
MuRIL | 63.09 | 67.19 | 58.40 | 65.30 | 56.49 | 62.09
<br/>
XNLI (Accuracy) | hi_tr | ur_tr | Average
:-------------- | ----: | ----: | ------:
mBERT | 39.6 | 38.86 | 39.23
MuRIL | 68.24 | 61.16 | 64.70
<br/>
Tatoeba (Accuracy) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average
:----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------:
mBERT | 2.18 | 1.95 | 5.13 | 1.80 | 3.00 | 2.40 | 2.30 | 2.68
MuRIL | 10.33 | 11.07 | 11.54 | 8.10 | 14.90 | 7.20 | 13.70 | 10.98
<br/>
## References
\[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint
arXiv:1810.04805, 2018.
\[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia)
\[3]: [Common Crawl](http://commoncrawl.org/the-data/)
\[4]:
[PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html)
\[5]: [Dakshina](https://github.com/google-research-datasets/dakshina)
\[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi),
Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya
(or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu
(ur).
\[7]: Conneau, Alexis, et al.
[Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf).
arXiv preprint arXiv:1911.02116 (2019).
\[8]: [IndicTrans](https://github.com/libindic/indic-trans)
\[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M.
(2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating
cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv
preprint arXiv:2003.11080.
\[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020).
[FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf)
arXiv preprint arXiv:2009.05166.
## Citation
If you find MuRIL useful in your applications, please cite the following paper:
```
@misc{khanuja2021muril,
title={MuRIL: Multilingual Representations for Indian Languages},
author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar},
year={2021},
eprint={2103.10730},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Contact
Please mail your queries/feedback to [email protected]. |