File size: 8,226 Bytes
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3b1fc6
 
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41698f6
81e83ae
7d67d43
41698f6
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41698f6
81e83ae
7d67d43
41698f6
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41698f6
81e83ae
7d67d43
41698f6
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41698f6
81e83ae
7d67d43
41698f6
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4db531
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4db531
81e83ae
 
 
 
 
 
 
 
 
 
c4db531
81e83ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language: 
- en

tags:
- text2text-generation

widget:
- text: "The <extra_id_0> walks in <extra_id_1> park"
  example_title: "Masked Language Modeling"

datasets:
- c4


license: apache-2.0
---

# Model Card for Switch Transformers Base - 256 experts

![model image](https://s3.amazonaws.com/moonup/production/uploads/1666966931908-62441d1d9fdefb55a0b7d12c.png)

#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)
9. [Model Card Authors](#model-card-authors)

# TL;DR

Switch Transformers is a Mixture of Experts (MoE) model trained on Masked Language Modeling (MLM) task. The model architecture is similar to the classic T5, but with the Feed Forward layers replaced by the Sparse MLP layers containing "experts" MLP. According to the [original paper](https://arxiv.org/pdf/2101.03961.pdf) the model enables faster training (scaling properties) while being better than T5 on fine-tuned tasks. 
As mentioned in the first few lines of the abstract : 
>  we advance the current scale of language models by pre-training up to trillion parameter models on the “Colossal Clean Crawled Corpus”, and achieve a 4x speedup over the T5-XXL model.

**Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [original paper](https://arxiv.org/pdf/2101.03961.pdf).

# Model Details

## Model Description


- **Model type:** Language model
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:** [All Switch Transformers Checkpoints](https://huggingface.co/models?search=switch)
- **Original Checkpoints:** [All Original Switch Transformers Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#mixture-of-experts-moe-checkpoints)
- **Resources for more information:**
  - [Research paper](https://arxiv.org/pdf/2101.03961.pdf)
  - [GitHub Repo](https://github.com/google-research/t5x)
  - [Hugging Face Switch Transformers Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/switch_transformers)

# Usage

Note that these checkpoints has been trained on Masked-Language Modeling (MLM) task. Therefore the checkpoints are not "ready-to-use" for downstream tasks. You may want to check `FLAN-T5` for running fine-tuned weights or fine-tune your own MoE following [this notebook](https://colab.research.google.com/drive/1aGGVHZmtKmcNBbAwa9hbu58DDpIuB5O4?usp=sharing)

Find below some example scripts on how to use the model in `transformers`:

## Using the Pytorch model

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python

from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("google/switch-base-256")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-256")

input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("google/switch-base-256")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-256", device_map="auto")

input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```

</details>

### Running the model on a GPU using different precisions

#### FP16

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("google/switch-base-256")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-256", device_map="auto", torch_dtype=torch.float16)

input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```

</details>

#### INT8

<details>
<summary> Click to expand </summary>

```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("google/switch-base-256")
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-256", device_map="auto")

input_text = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
>>> <pad> <extra_id_0> man<extra_id_1> beer<extra_id_2> a<extra_id_3> salt<extra_id_4>.</s>
```

</details>

# Uses

## Direct Use and Downstream Use

See the [research paper](https://arxiv.org/pdf/2101.03961.pdf) for further details.

## Out-of-Scope Use

More information needed.

# Bias, Risks, and Limitations

More information needed.

## Ethical considerations and risks

More information needed.

## Known Limitations

More information needed.

## Sensitive Use:

More information needed.

# Training Details

## Training Data

The model was trained on a Masked Language Modeling task, on Colossal Clean Crawled Corpus (C4) dataset, following the same procedure as `T5`.


## Training Procedure

According to the model card from the [original paper](https://arxiv.org/pdf/2101.03961.pdf) the model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).


# Evaluation

## Testing Data, Factors & Metrics

The authors evaluated the model on various tasks and compared the results against T5. See the table below for some quantitative evaluation:
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1666967660372-62441d1d9fdefb55a0b7d12c.png)
For full details, please check the [research paper](https://arxiv.org/pdf/2101.03961.pdf).

## Results 

For full results for Switch Transformers, see the [research paper](https://arxiv.org/pdf/2101.03961.pdf), Table 5.

# Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4  | Number of chips ≥ 4.
- **Hours used:** More information needed
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed

# Citation

**BibTeX:**

```bibtex
@misc{https://doi.org/10.48550/arxiv.2101.03961,
  doi = {10.48550/ARXIV.2101.03961},
  
  url = {https://arxiv.org/abs/2101.03961},
  
  author = {Fedus, William and Zoph, Barret and Shazeer, Noam},
  
  keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity},
  
  publisher = {arXiv},
  
  year = {2021},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

```