File size: 4,196 Bytes
ed578a0
 
aaa466a
 
7acfce4
 
ed578a0
 
b24b964
 
ed578a0
 
b24b964
 
ed578a0
 
4844daa
f5edeb6
ed578a0
 
 
 
 
 
f637b66
 
ed578a0
 
b24b964
 
 
 
 
 
 
 
 
aaa466a
b24b964
466b3db
aaa466a
466b3db
aaa466a
 
 
 
 
b24b964
 
8e50991
b24b964
8e50991
 
 
 
 
 
 
 
 
 
 
f637b66
 
 
 
 
8e50991
 
 
 
 
 
 
b24b964
f637b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e50991
 
f5edeb6
ed578a0
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: cc-by-nc-4.0
language:
- en
tags:
- summarization
---

# **TrueTeacher**

This is a **Factual Consistency Evaluation** model, introduced in the [TrueTeacher paper (Gekhman et al, 2023)](https://arxiv.org/pdf/2305.11171.pdf).

## Model Details

The model is optimized for evaluating factual consistency in **summarization**.

It is the main model from the paper (see "T5-11B w. ANLI + TrueTeacher full" in Table 1) which is based on a **T5-11B** [(Raffel
et al., 2020)](https://jmlr.org/papers/volume21/20-074/20-074.pdf) fine-tuned with a mixture of the following datasets:
- TrueTeacher ([Gekhman et al., 2023](https://arxiv.org/pdf/2305.11171.pdf))
- ANLI ([Nie et al., 2020](https://aclanthology.org/2020.acl-main.441.pdf))


The input format for the model is: "premise: GROUNDING_DOCUMENT hypothesis: HYPOTHESIS_SUMMARY".

To accomodate the input length of common summarization datasets we recommend setting **max_length** to **2048**.

The model predicts a binary label ('1' - Factualy Consistent, '0' - Factualy Inconsistent).

## Evaluation results

This model achieves the following ROC AUC results on the summarization subset of the [TRUE benchmark (Honovich et al, 2022)](https://arxiv.org/pdf/2204.04991.pdf):

| **MNBM** | **QAGS-X** | **FRANK** | **SummEval** | **QAGS-C** | **Average** |
|----------|-----------|-----------|--------------|-----------|-------------|
| 78.1     | 89.4      | 93.6      | 88.5         | 89.4      | 87.8        |


## Intended Use

This model is intended for a research use (**non-commercial**) in English.

The reccomended use case is evaluating factual consistency in summarization.

## Out-of-scope use 
Any use cases which violate the **cc-by-nc-4.0** license.

Usage in languages other than English. 

## Usage examples

#### classification
```python
from transformers import T5ForConditionalGeneration
from transformers import T5Tokenizer

model_path = 'google/t5_11b_trueteacher_and_anli'
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)

premise = 'the sun is shining'
for hypothesis, expected in [('the sun is out in the sky', '1'), 
                             ('the cat is shiny', '0')]:
  input_ids = tokenizer(
      f'premise: {premise} hypothesis: {hypothesis}',
      return_tensors='pt',
      truncation=True,
      max_length=2048).input_ids
  outputs = model.generate(input_ids)
  result = tokenizer.decode(outputs[0], skip_special_tokens=True)
  print(f'premise: {premise}')
  print(f'hypothesis: {hypothesis}')
  print(f'result: {result} (expected: {expected})\n')
```

#### scoring
```python
from transformers import T5ForConditionalGeneration
from transformers import T5Tokenizer
import torch

model_path = 'google/t5_11b_trueteacher_and_anli'
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)

premise = 'the sun is shining'
for hypothesis, expected in [('the sun is out in the sky', '>> 0.5'), 
                             ('the cat is shiny', '<< 0.5')]:
  input_ids = tokenizer(
      f'premise: {premise} hypothesis: {hypothesis}',
      return_tensors='pt',
      truncation=True,
      max_length=2048).input_ids
  decoder_input_ids = torch.tensor([[tokenizer.pad_token_id]])
  outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
  logits = outputs.logits
  probs = torch.softmax(logits[0], dim=-1)
  one_token_id = tokenizer('1').input_ids[0]
  entailment_prob = probs[0, one_token_id].item()
  print(f'premise: {premise}')
  print(f'hypothesis: {hypothesis}')
  print(f'score: {entailment_prob:.3f} (expected: {expected})\n')
```

## Citation

If you use this model for a research publication, please cite the TrueTeacher paper (using the bibtex entry below), as well as the ANLI and T5 papers mentioned above.

```
@misc{gekhman2023trueteacher,
      title={TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models}, 
      author={Zorik Gekhman and Jonathan Herzig and Roee Aharoni and Chen Elkind and Idan Szpektor},
      year={2023},
      eprint={2305.11171},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```