Update model card
Browse files
README.md
CHANGED
@@ -34,10 +34,13 @@ Here is how to use this model to classify an image of the COCO 2017 dataset into
|
|
34 |
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
35 |
from PIL import Image
|
36 |
import requests
|
|
|
37 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
38 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
39 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
40 |
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
|
|
41 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
42 |
outputs = model(**inputs)
|
43 |
logits = outputs.logits
|
@@ -46,7 +49,7 @@ predicted_class_idx = logits.argmax(-1).item()
|
|
46 |
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
47 |
```
|
48 |
|
49 |
-
|
50 |
|
51 |
## Training data
|
52 |
|
|
|
34 |
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
35 |
from PIL import Image
|
36 |
import requests
|
37 |
+
|
38 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
39 |
image = Image.open(requests.get(url, stream=True).raw)
|
40 |
+
|
41 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
42 |
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
43 |
+
|
44 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
45 |
outputs = model(**inputs)
|
46 |
logits = outputs.logits
|
|
|
49 |
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
50 |
```
|
51 |
|
52 |
+
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/vit.html#).
|
53 |
|
54 |
## Training data
|
55 |
|