# Hydra ![Hydra](./matrix_mixer.png "Matrix Mixer") > **Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers**\ > Sukjun Hwang*, Aakash Lahoti*, Tri Dao, Albert Gu\ > Paper: https://arxiv.org/abs/2407.09941 \ > Blogpost: https://goombalab.github.io/blog/2024/hydra-part1-matrix-mixer/ ## About ## Installation Follow the installation section of [Mamba](https://github.com/state-spaces/mamba); simply, ```bash pip install mamba-ssm ``` [Option] For training BERT (`./hydra/bert`), install additional required packages via `pip install -r requirements.txt` ## Usage ### Hydra Block The quasiseparable matrix mixer, ***Hydra***, is our best model for bidirectional sequence processing (details in Section 3).\ The implementation is at [./hydra/modules/hydra.py](https://github.com/goombalab/hydra/blob/main/hydra/modules/hydra.py). ```python import torch from .hydra import Hydra batch, length, dim = 2, 64, 16 x = torch.randn(batch, length, dim).to("cuda") model = Hydra( d_model=dim, # Model dimension d_model d_state=64, # SSM state expansion factor d_conv=7, # Local non-causal convolution width expand=2, # Block expansion factor ).to("cuda") y = model(x) assert y.shape == x.shape ``` ### Matrix Mixer Block The matrix mixer framework is implemented at [./hydra/modules/matrix_mixer.py](https://github.com/goombalab/hydra/blob/main/hydra/modules/matrix_mixer.py).\ You can easily integrate your own mixer matrix by following our implementations of various sequence mixers located at [./hydra/modules/matrix_mixers/](./hydra/modules/matrix_mixers/)! ```python from .hydra import MatrixMixer model = MatrixMixer( """ matrix_mixer_type: options for matrix_mixer_type {'dense', 'toeplitz', 'vandermonde', 'cauchy', 'low_rank', 'attention', 'quasiseparable'} is_data_dependent: boolean flag to parameterize the mixer matrix to SAM """ matrix_mixer_type=matrix_mixer_type, is_data_dependent=is_data_dependent, d_model=dim, # Model dimension d_model qk_dim=qk_dim, # dimension for QK ).to("cuda") y = model(x) assert y.shape == x.shape ``` ### BERT Our code for training BERT ([./hydra/bert/](https://github.com/goombalab/hydra/blob/main/hydra/bert/)) is based on [MosaicBERT](https://github.com/mosaicml/examples/tree/main/examples/benchmarks/bert) and [M2](https://github.com/HazyResearch/m2). Follow the instructions of MosaicBERT ([./hydra/bert/README.md](https://github.com/goombalab/hydra/blob/main/hydra/bert/README.md)) for details (*e.g.*, setting up dataset and running code). \ The default configurations for Hydra and MatrixMixer are located at: - Pretrain: [./hydra/bert/yamls/pretrain](https://github.com/goombalab/hydra/blob/main/hydra/bert/yamls/pretrain) - Finetune: [./hydra/bert/yamls/finetune](https://github.com/goombalab/hydra/blob/main/hydra/bert/yamls/finetune) #### Example commands: Pretrain Hydra on C4 using a single GPU: ```bash python main.py yamls/pretrain/hydra.yaml ``` Pretrain Hydra on C4 using 8 GPUs: ```bash composer -n 8 main.py yamls/pretrain/hydra.yaml ``` Finetune Hydra on GLUE: ```bash python glue.py yamls/finetune/hydra.yaml ``` ## Acknowledgement We thank the authors of [Mamba](https://github.com/state-spaces/mamba), [MosaicBERT](https://github.com/mosaicml/examples/tree/main/examples/benchmarks/bert), and [M2](https://github.com/HazyResearch/m2) for their wonderful codebases. ## Citation If you use this codebase, or otherwise find our work valuable, please cite Hydra: ``` @article{hydra, title={Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers}, author={Hwang, Sukjun and Lahoti, Aakash and Dao, Tri and Gu, Albert}, journal={arXiv preprint arXiv:2407.09941}, year={2024} } ```