leo-pekelis-gradient commited on
Commit
df6e96a
1 Parent(s): 848a82c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -17
README.md CHANGED
@@ -12,19 +12,19 @@ license: llama3
12
  # Llama-3 8B Instruct 1048k
13
  Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. To learn more or collaborate on a custom model, drop us a message at [email protected].
14
 
15
- This model extends LLama-3 8B's context length from 8k to 1048k, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training (< 200M tokens) by appropriately adjusting RoPE theta.
16
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/hiHWva3CbsrnPvZTp5-lu.png)
 
17
 
18
  **Approach:**
19
 
20
  - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base
21
- - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by a new data-driven RoPE theta optimization technique
22
- - Progressive training on increasing context lengths similar to the [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below)
23
 
24
  **Infra:**
25
 
26
- We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 262144 tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster.
27
-
28
 
29
  **Data:**
30
 
@@ -32,17 +32,22 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
32
 
33
  **Progressive Training Details:**
34
 
35
- | Parameter | 65K | 262K | 1048K |
36
- |-----------------------------|----------------|------------|------------|
37
- | Initialize From | LLaMA-3-8B-Inst| 65K | xx K |
38
- | Sequence Length | 2^16 | 2^18 | 2^20 |
39
- | RoPE theta | 15.3 M | 207.1 M | 2804.3 M |
40
- | Batch Size (Tokens / Step) | 2.097 M | 4.192 M | xxx M |
41
- | Steps | 30 | 24 | xx |
42
- | Total Tokens | 63 M | 101 M | xxx M |
43
- | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 |
44
- | # GPUs | 32 | 32 | xx |
45
- | GPU Type | NVIDIA L40S | NVIDIA L40S| NVIDIA L40S|
 
 
 
 
 
46
 
47
  ## The Gradient AI Team
48
 
 
12
  # Llama-3 8B Instruct 1048k
13
  Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. To learn more or collaborate on a custom model, drop us a message at [email protected].
14
 
15
+ This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 320M total tokens, which is < 0.002% of Lamma-3's original pre-training data.
16
+
17
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png)
18
 
19
  **Approach:**
20
 
21
  - [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base
22
+ - NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization
23
+ - Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below)
24
 
25
  **Infra:**
26
 
27
+ We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster. Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below).
 
28
 
29
  **Data:**
30
 
 
32
 
33
  **Progressive Training Details:**
34
 
35
+ | | 65K | 262K | 524k | 1048k |
36
+ |------------------------|-----------|-----------|-----------|-----------|
37
+ | Initialize From | LLaMA-3 7B| 65K | 262K | 524k |
38
+ | Sequence Length 2^N | 16 | 18 | 19 | 20 |
39
+ | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B |
40
+ | batch_size | 1 | 1 | 2 | 2 |
41
+ | gradient_accumulation_steps | 32 | 16 | 1 | 1 |
42
+ | Steps | 30 | 24 | 50 | 50 |
43
+ | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 |
44
+ | learning_rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
45
+ | # GPUs | 8 | 32 | 512 | 512 |
46
+ | Ring or Data parallelism | 1 | 1 | 8 | 8 |
47
+ | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S |
48
+ | Minutes to Train (Wall)| 202 | 555 | 61 | 87 |
49
+
50
+
51
 
52
  ## The Gradient AI Team
53