File size: 2,241 Bytes
a9aed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---

library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_ner_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wnut_17
      type: wnut_17
      config: wnut_17
      split: test
      args: wnut_17
    metrics:
    - name: Precision
      type: precision
      value: 0.576214405360134
    - name: Recall
      type: recall
      value: 0.31881371640407785
    - name: F1
      type: f1
      value: 0.41050119331742246
    - name: Accuracy
      type: accuracy
      value: 0.94258475482023
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_ner_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.2722

- Precision: 0.5762

- Recall: 0.3188

- F1: 0.4105

- Accuracy: 0.9426



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|

| No log        | 1.0   | 213  | 0.2801          | 0.5214    | 0.2373 | 0.3261 | 0.9384   |

| No log        | 2.0   | 426  | 0.2722          | 0.5762    | 0.3188 | 0.4105 | 0.9426   |





### Framework versions



- Transformers 4.45.0

- Pytorch 2.4.1+cpu

- Datasets 3.0.0

- Tokenizers 0.20.0