--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-18 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-18-dungeons-001 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.5 --- # resnet-18-dungeons-001 This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1886 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 85 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0594 | 6.6667 | 10 | 1.3086 | 0.5833 | | 0.0973 | 13.3333 | 20 | 1.3523 | 0.5 | | 0.068 | 20.0 | 30 | 1.2428 | 0.5833 | | 0.0671 | 26.6667 | 40 | 1.2280 | 0.5833 | | 0.0527 | 33.3333 | 50 | 1.2677 | 0.5833 | | 0.0592 | 40.0 | 60 | 1.2846 | 0.5833 | | 0.0446 | 46.6667 | 70 | 1.2210 | 0.5833 | | 0.0565 | 53.3333 | 80 | 1.1886 | 0.5 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1