File size: 2,384 Bytes
df16f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: peft
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-testing-dungeons-lora-23Nov24-008
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: rotated_maps
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - type: accuracy
      value: 0.9629629629629629
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-large-patch16-224-testing-dungeons-lora-23Nov24-008

This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the rotated_maps dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2048
- Accuracy: 0.9630

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.6667 | 1    | 1.5395          | 0.1852   |
| No log        | 2.0    | 3    | 1.2052          | 0.4815   |
| No log        | 2.6667 | 4    | 1.1291          | 0.5185   |
| No log        | 4.0    | 6    | 0.4352          | 0.8148   |
| No log        | 4.6667 | 7    | 0.3886          | 0.9259   |
| No log        | 6.0    | 9    | 0.2470          | 0.9630   |
| 0.9407        | 6.6667 | 10   | 0.2048          | 0.9630   |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3