File size: 1,996 Bytes
87d7be6 70aa57d 87d7be6 70aa57d 87d7be6 b4815db 87d7be6 70aa57d 87d7be6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-de
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5965
- Rouge1: 19.1764
- Rouge2: 10.6855
- Rougel: 18.7602
- Rougelsum: 18.8956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.9041 | 1.0 | 1301 | 2.6000 | 17.3749 | 10.0728 | 16.9903 | 17.0336 |
| 2.744 | 2.0 | 2602 | 2.5874 | 17.7266 | 9.2481 | 17.2785 | 17.3827 |
| 2.6641 | 3.0 | 3903 | 2.6001 | 19.0052 | 10.6312 | 18.7604 | 18.754 |
| 2.6189 | 4.0 | 5204 | 2.6012 | 18.834 | 10.1299 | 18.4209 | 18.5351 |
| 2.6029 | 5.0 | 6505 | 2.5944 | 19.3375 | 10.537 | 18.8614 | 19.0826 |
| 2.6086 | 6.0 | 7806 | 2.5965 | 19.1764 | 10.6855 | 18.7602 | 18.8956 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|