--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - automatic-speech-recognition - gttsehu/basque_parliament_1 - generated_from_trainer metrics: - wer model-index: - name: facebook/wav2vec2-xls-r-300m results: [] datasets: - gttsehu/basque_parliament_1 --- # facebook/wav2vec2-xls-r-300m This work was partially funded by the Spanish Ministry of Science and Innovation (OPENSPEECH project, PID2019-106424RB-I00). This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GTTSEHU/BASQUE_PARLIAMENT_1 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.0846 - Wer: 0.0367 - Cer: 0.0132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 0.7054 | 0.19 | 4000 | 0.1011 | 0.0871 | 0.0227 | | 0.0856 | 0.39 | 8000 | 0.0995 | 0.0747 | 0.0207 | | 0.075 | 0.58 | 12000 | 0.0868 | 0.0647 | 0.0185 | | 0.0694 | 0.77 | 16000 | 0.0853 | 0.0619 | 0.0183 | | 0.0658 | 0.97 | 20000 | 0.0778 | 0.0573 | 0.0171 | | 0.0589 | 1.16 | 24000 | 0.0821 | 0.0546 | 0.0166 | | 0.0572 | 1.35 | 28000 | 0.0827 | 0.0558 | 0.0170 | | 0.0551 | 1.55 | 32000 | 0.0830 | 0.0533 | 0.0169 | | 0.054 | 1.74 | 36000 | 0.0788 | 0.0512 | 0.0162 | | 0.0524 | 1.93 | 40000 | 0.0783 | 0.0489 | 0.0156 | | 0.048 | 2.13 | 44000 | 0.0861 | 0.0492 | 0.0160 | | 0.046 | 2.32 | 48000 | 0.0763 | 0.0494 | 0.0154 | | 0.0456 | 2.51 | 52000 | 0.0835 | 0.0471 | 0.0153 | | 0.0439 | 2.71 | 56000 | 0.0790 | 0.0469 | 0.0152 | | 0.0436 | 2.9 | 60000 | 0.0832 | 0.0472 | 0.0155 | | 0.0406 | 3.09 | 64000 | 0.0810 | 0.0442 | 0.0148 | | 0.0386 | 3.29 | 68000 | 0.0810 | 0.0436 | 0.0146 | | 0.038 | 3.48 | 72000 | 0.0778 | 0.0430 | 0.0143 | | 0.0373 | 3.67 | 76000 | 0.0785 | 0.0430 | 0.0144 | | 0.0363 | 3.87 | 80000 | 0.0788 | 0.0421 | 0.0144 | | 0.0348 | 4.06 | 84000 | 0.0823 | 0.0423 | 0.0144 | | 0.0323 | 4.25 | 88000 | 0.0819 | 0.0407 | 0.0143 | | 0.0319 | 4.45 | 92000 | 0.0809 | 0.0410 | 0.0142 | | 0.0314 | 4.64 | 96000 | 0.0821 | 0.0400 | 0.0138 | | 0.0306 | 4.83 | 100000 | 0.0813 | 0.0389 | 0.0137 | | 0.0295 | 5.03 | 104000 | 0.0820 | 0.0377 | 0.0131 | | 0.0275 | 5.22 | 108000 | 0.0866 | 0.0378 | 0.0137 | | 0.0267 | 5.41 | 112000 | 0.0831 | 0.0376 | 0.0134 | | 0.0264 | 5.61 | 116000 | 0.0845 | 0.0369 | 0.0132 | | 0.0258 | 5.8 | 120000 | 0.0859 | 0.0370 | 0.0133 | | 0.0254 | 6.0 | 124000 | 0.0846 | 0.0367 | 0.0132 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.1.dev0 - Tokenizers 0.15.0