File size: 25,788 Bytes
c3eb07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1M<n<10M
- loss:TripletLoss
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: 'method: Making reflective work practices visible'
  sentences:
  - 'method: Job quality takes into account both wage and non-wage attributes of a
    job.'
  - 'purpose: There could therefore be rank differences in the leadership behavioural
    patterns of managers.'
  - 'negative: SN has a positive effect on the user''s intention to use toward the
    SNS.'
- source_sentence: 'findings: Proposed logistics framework'
  sentences:
  - 'purpose: However these may not be the only reasons for undertaking collection
    evaluation.'
  - 'purpose: Clearly, there is variation in the definition and understanding of the
    term sustainability.'
  - 'purpose: The study is based on a panel data regression analysis of 234 SMEs over
    a 10-year period (2004-2013).'
- source_sentence: 'method: Electoral campaigns and party websites'
  sentences:
  - 'method: Track, leadership style, and team outcomes'
  - 'purpose: , three CKM strategies that organizations use to manage customer knowledge
    are considered.'
  - 'findings: Motherhood directly affects career progression.'
- source_sentence: 'negative: Entrepreneurship education in Iran'
  sentences:
  - 'negative: Sensemaking as local weather'
  - 'findings: In the next section, we will develop hypotheses to explain retail banner
    divestment timing.'
  - 'negative: Thus, the purpose of this paper is to review AR in retailing within
    business-oriented research.'
- source_sentence: 'purpose: 2.2 Decentralization and participation'
  sentences:
  - 'purpose: Social norm approach and feedback'
  - 'findings: The upper path of the model represents how counter-knowledge directly
    affects ACAP, reducing HC.'
  - 'purpose: Online strategy building requires a series of steps.'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: triplet
      type: triplet
    metrics:
    - type: cosine_accuracy
      value: 0.6998206089274619
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.39671483834759774
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.6998506744703453
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.7153344290553406
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.7153344290553406
      name: Max Accuracy
---

# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3ab2765205fa23269bcc8c8e08ae5b1c35203ab4 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gubartz/facet_retriever")
# Run inference
sentences = [
    'purpose: 2.2 Decentralization and participation',
    'purpose: Social norm approach and feedback',
    'findings: The upper path of the model represents how counter-knowledge directly affects ACAP, reducing HC.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `triplet`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.6998** |
| dot_accuracy        | 0.3967     |
| manhattan_accuracy  | 0.6999     |
| euclidean_accuracy  | 0.7153     |
| max_accuracy        | 0.7153     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,541,116 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                            | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 42.16 tokens</li><li>max: 187 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 42.77 tokens</li><li>max: 183 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 38.65 tokens</li><li>max: 227 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                | positive                                                                                                                                                                                                                                                                                                                              | negative                                                                                                                                                                                                                                                                     |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>purpose: study attempts to fill this gap by examining firm-specific capabilities of Turkish outward FDI firms.</code>                                                                                                                                                           | <code>purpose: In short, the above-mentioned percentages show the lack of usage of knowledge sharing and collaborative technologies in some research institutions in Malaysia due to perceived causes such as non-availability of technology, lack of support, absent of teamwork culture, and lack of knowledge and training.</code> | <code>purpose: While SMA alone must not be used to gather and analyze these voices, these tools can guide organizations in relating to their publics, increasing the way groups identify with them and motivating these groups to enter into relationships with them.</code> |
  | <code>purpose: In this section of the paper, we try to explain citizen attitudes towards sustainable procurement.</code>                                                                                                                                                              | <code>purpose: Different from previous studies to concern key factors for motivating consumers' online buying behavior and behavioral intention (Liang and Lim, 2011; Zhang et al., 2013), such finding add knowledge in the filed by finding the meaningful affective mechanism of consumers in OFGB.</code>                         | <code>purpose: Task significance is not significantly different among generational cohorts of knowledge workers.</code>                                                                                                                                                      |
  | <code>purpose: However, the extensive use of information technology (IT) also comes with related security problems caused by the abstract nature of interacting systems - technical and organizational - and the seemingly lack of or inferior control of data or information.</code> | <code>purpose: No previous research using cluster analysis in nursing homes was found, but clusters identified in this study are lower than in previous hospital-based research into patients experiences and satisfaction used as cluster variables (Grondahl et al., 2011).</code>                                                  | <code>purpose: Yet, this engagement has tended to only involve a small section of the overall medical workforce in practice, raising questions about the nature of medical engagement more broadly and the mechanisms needed to enhance these processes.</code>              |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 199,564 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 42.64 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 42.42 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.23 tokens</li><li>max: 193 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                          | positive                                                                                                                                                                                                                                                                                                                                                                    | negative                                                                                                                                                                                                                                                                               |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>purpose: However, it seems obvious that, in the long run, Green OA can be seen as leading progressively to the disappearance of the "traditional" publication model and, possibly, of scientific publishers altogether unless they reconsider their business model and adapt to the new situation.</code> | <code>purpose: Considering the transcendence of the sustainable development agenda in the UDRD, it was decided to search for explicit references to the issue of risk in the proposed indicators, finding a correspondence between four indicators of the development agenda and indicators proposed for the implementation of the Sendai Framework (Maskrey, 2016).</code> | <code>purpose: Finally, the terms of the permanent multinomial corresponding to the particular manufacturing system may be listed and the resulting graphs may be obtained and used for structurally analyzing the capabilities of the manufacturing system in different areas.</code> |
  | <code>purpose: To what extent do information science and the other disciplines demonstrate interest in social network theory and social network analysis?RQ2.</code>                                                                                                                                            | <code>purpose: This study explores relationships between relationship commitment, cooperative behavior and alliance performance from the perspectives of both companies and contract farmers.</code>                                                                                                                                                                        | <code>purpose: 4.1 The respondents' health literacy skills</code>                                                                                                                                                                                                                      |
  | <code>purpose: The evidence discussed above shows the nature of forecasting connections in the income growth across the globe.</code>                                                                                                                                                                           | <code>purpose: Namely, the paper confirms that there is vast deviation between the European countries when it comes to consumer trust in banking in general but also related to each studied banking service.</code>                                                                                                                                                        | <code>purpose: Healthcare is one of the major sectors in which Lean production is being considered and adopted as an improvement program (Poksinska, 2010).</code>                                                                                                                     |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `auto_find_batch_size`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: True
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step     | Training Loss | loss       | triplet_cosine_accuracy |
|:-------:|:--------:|:-------------:|:----------:|:-----------------------:|
| 0.3322  | 500      | 4.2859        | -          | -                       |
| 0.6645  | 1000     | 3.693         | -          | -                       |
| 0.9967  | 1500     | 3.5602        | -          | -                       |
| 1.0     | 1505     | -             | 3.4908     | 0.6914                  |
| 1.3289  | 2000     | 3.427         | -          | -                       |
| 1.6611  | 2500     | 3.3854        | -          | -                       |
| 1.9934  | 3000     | 3.3551        | -          | -                       |
| 2.0     | 3010     | -             | 3.3604     | 0.7000                  |
| 2.3256  | 3500     | 3.2353        | -          | -                       |
| 2.6578  | 4000     | 3.221         | -          | -                       |
| 2.9900  | 4500     | 3.2038        | -          | -                       |
| **3.0** | **4515** | **-**         | **3.3203** | **0.7026**              |
| 3.3223  | 5000     | 3.1019        | -          | -                       |
| 3.6545  | 5500     | 3.0942        | -          | -                       |
| 3.9867  | 6000     | 3.085         | -          | -                       |
| 4.0     | 6020     | -             | 3.3177     | 0.7014                  |
| 4.3189  | 6500     | 3.0129        | -          | -                       |
| 4.6512  | 7000     | 3.0083        | -          | -                       |
| 4.9834  | 7500     | 2.9971        | -          | -                       |
| 5.0     | 7525     | -             | 3.3264     | 0.6998                  |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->