--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: whisper-large-v2-finetuning results: [] --- # whisper-large-v2-finetuning This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1803 - eval_wer: 14.9238 - eval_runtime: 3860.013 - eval_samples_per_second: 2.453 - eval_steps_per_second: 0.307 - epoch: 1.5267 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.1 - Datasets 2.20.0 - Tokenizers 0.19.1