Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ru
|
6 |
+
---
|
7 |
+
|
8 |
+
# Saiga2-13B-4bit
|
9 |
+
This files are GPTQ model files for [saiga2-13B-lora](https://huggingface.co/IlyaGusev/saiga2_13b_lora) model.
|
10 |
+
|
11 |
+
## Technical details
|
12 |
+
Model was quantized to 4-bit with [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) library
|
13 |
+
|
14 |
+
## Examples of usage
|
15 |
+
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
16 |
+
|
17 |
+
GITHUB_ACTIONS=true pip install auto-gptq
|
18 |
+
|
19 |
+
Then try the following example code:
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoTokenizer, TextGenerationPipeline
|
23 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
24 |
+
|
25 |
+
|
26 |
+
class Conversation:
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
message_template=DEFAULT_MESSAGE_TEMPLATE,
|
30 |
+
system_prompt=DEFAULT_SYSTEM_PROMPT,
|
31 |
+
start_token_id=1,
|
32 |
+
bot_token_id=9225
|
33 |
+
):
|
34 |
+
self.message_template = message_template
|
35 |
+
self.start_token_id = start_token_id
|
36 |
+
self.bot_token_id = bot_token_id
|
37 |
+
self.messages = [{
|
38 |
+
"role": "system",
|
39 |
+
"content": system_prompt
|
40 |
+
}]
|
41 |
+
|
42 |
+
def get_start_token_id(self):
|
43 |
+
return self.start_token_id
|
44 |
+
|
45 |
+
def get_bot_token_id(self):
|
46 |
+
return self.bot_token_id
|
47 |
+
|
48 |
+
def add_user_message(self, message):
|
49 |
+
self.messages.append({
|
50 |
+
"role": "user",
|
51 |
+
"content": message
|
52 |
+
})
|
53 |
+
|
54 |
+
def add_bot_message(self, message):
|
55 |
+
self.messages.append({
|
56 |
+
"role": "bot",
|
57 |
+
"content": message
|
58 |
+
})
|
59 |
+
|
60 |
+
def get_prompt(self, tokenizer):
|
61 |
+
final_text = ""
|
62 |
+
for message in self.messages:
|
63 |
+
message_text = self.message_template.format(**message)
|
64 |
+
final_text += message_text
|
65 |
+
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
|
66 |
+
return final_text.strip()
|
67 |
+
|
68 |
+
|
69 |
+
def generate(model, tokenizer, prompt, generation_config):
|
70 |
+
data = tokenizer(prompt, return_tensors="pt")
|
71 |
+
data = {k: v.to(model.device) for k, v in data.items()}
|
72 |
+
output_ids = model.generate(
|
73 |
+
**data,
|
74 |
+
generation_config=generation_config
|
75 |
+
)[0]
|
76 |
+
output_ids = output_ids[len(data["input_ids"][0]):]
|
77 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
78 |
+
return output.strip()
|
79 |
+
|
80 |
+
|
81 |
+
MODEL_NAME = "gurgutan/saiga2-13b-4bit"
|
82 |
+
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
|
83 |
+
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
84 |
+
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
87 |
+
model = AutoGPTQForCausalLM.from_quantized(MODEL_NAME, device="cuda:0", use_safetensors=True, use_triton=False)
|
88 |
+
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
|
89 |
+
model.eval()
|
90 |
+
|
91 |
+
input = "Сочини стих, который начинается словами: Буря мглою небо кроет"
|
92 |
+
conversation = Conversation()
|
93 |
+
conversation.add_user_message(input)
|
94 |
+
prompt = conversation.get_prompt(tokenizer)
|
95 |
+
output = generate(model, tokenizer, prompt, generation_config)
|
96 |
+
print(inp)
|
97 |
+
print(output)
|
98 |
+
|
99 |
+
```
|
100 |
+
# Original model: [saiga2-13B-lora](https://huggingface.co/IlyaGusev/saiga2_13b_lora)
|
101 |
+
Модель ассистента на основе LLaMA2 дообученная на русскоязычных наборах. Модель имеет 13 млрд. параметров.
|