File size: 2,650 Bytes
d7f69c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7de81
 
 
 
 
 
 
 
 
 
 
d7f69c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd4138
ab7de81
d7f69c5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_keras_callback
model-index:
- name: gustavokpc/bert-base-portuguese-cased_LRATE_2e-05_EPOCHS_5
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# gustavokpc/bert-base-portuguese-cased_LRATE_2e-05_EPOCHS_5

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0733
- Train Accuracy: 0.9750
- Train F1 M: 0.5536
- Train Precision M: 0.4010
- Train Recall M: 0.9577
- Validation Loss: 0.1758
- Validation Accuracy: 0.9426
- Validation F1 M: 0.5568
- Validation Precision M: 0.4015
- Validation Recall M: 0.9529
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3790, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch |
|:----------:|:--------------:|:----------:|:-----------------:|:--------------:|:---------------:|:-------------------:|:---------------:|:----------------------:|:-------------------:|:-----:|
| 0.2270     | 0.9119         | 0.5181     | 0.3865            | 0.8561         | 0.1618          | 0.9367              | 0.5592          | 0.4050                 | 0.9478              | 0     |
| 0.1186     | 0.9551         | 0.5516     | 0.4007            | 0.9397         | 0.1621          | 0.9347              | 0.5628          | 0.4068                 | 0.9580              | 1     |
| 0.0733     | 0.9750         | 0.5536     | 0.4010            | 0.9577         | 0.1758          | 0.9426              | 0.5568          | 0.4015                 | 0.9529              | 2     |


### Framework versions

- Transformers 4.34.1
- TensorFlow 2.10.0
- Datasets 2.14.5
- Tokenizers 0.14.1