arnocandel commited on
Commit
07ecbc4
1 Parent(s): 81f8788

Add h2ogpt-oig-oasst1-falcon-40b

Browse files
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tiiuae/falcon-40b",
3
+ "alibi": false,
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "RWForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "tiiuae/falcon-40b--configuration_RW.RWConfig",
11
+ "AutoModel": "tiiuae/falcon-40b--modelling_RW.RWModel",
12
+ "AutoModelForCausalLM": "tiiuae/falcon-40b--modelling_RW.RWForCausalLM",
13
+ "AutoModelForQuestionAnswering": "tiiuae/falcon-40b--modelling_RW.RWForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "tiiuae/falcon-40b--modelling_RW.RWForSequenceClassification",
15
+ "AutoModelForTokenClassification": "tiiuae/falcon-40b--modelling_RW.RWForTokenClassification"
16
+ },
17
+ "bias": false,
18
+ "bos_token_id": 11,
19
+ "custom_pipelines": {
20
+ "text-generation": {
21
+ "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
22
+ "pt": "AutoModelForCausalLM"
23
+ }
24
+ },
25
+ "eos_token_id": 11,
26
+ "hidden_dropout": 0.0,
27
+ "hidden_size": 8192,
28
+ "initializer_range": 0.02,
29
+ "layer_norm_epsilon": 1e-05,
30
+ "model_type": "RefinedWeb",
31
+ "n_head": 128,
32
+ "n_head_kv": 8,
33
+ "n_layer": 60,
34
+ "parallel_attn": true,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.30.0.dev0",
37
+ "use_cache": true,
38
+ "vocab_size": 65024
39
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.30.0.dev0"
6
+ }
h2oai_pipeline.py ADDED
@@ -0,0 +1,774 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TextGenerationPipeline
2
+ from transformers.pipelines.text_generation import ReturnType
3
+
4
+
5
+
6
+
7
+
8
+ class H2OTextGenerationPipeline(TextGenerationPipeline):
9
+ def __init__(self, *args, debug=False, chat=False, stream_output=False,
10
+ sanitize_bot_response=True,
11
+ use_prompter=True, prompter=None, prompt_type=None,
12
+ max_input_tokens=2048 - 256, **kwargs):
13
+ """
14
+ HF-like pipeline, but handle instruction prompting and stopping (for some models)
15
+ :param args:
16
+ :param debug:
17
+ :param chat:
18
+ :param stream_output:
19
+ :param sanitize_bot_response:
20
+ :param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
21
+ :param prompter: prompter, can pass if have already
22
+ :param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in from prompter.py.
23
+ If use_prompter, then will make prompter and use it.
24
+ :param max_input_tokens:
25
+ :param kwargs:
26
+ """
27
+ super().__init__(*args, **kwargs)
28
+ self.prompt_text = None
29
+ self.use_prompter = use_prompter
30
+ self.prompt_type = prompt_type
31
+ self.prompter = prompter
32
+ if self.use_prompter:
33
+ if self.prompter is not None:
34
+ assert self.prompter.prompt_type is not None
35
+ else:
36
+ self.prompter = Prompter(self.prompt_type, debug=debug, chat=chat, stream_output=stream_output)
37
+ self.human = self.prompter.humanstr
38
+ self.bot = self.prompter.botstr
39
+ self.can_stop = True
40
+ else:
41
+ self.prompter = None
42
+ self.human = None
43
+ self.bot = None
44
+ self.can_stop = False
45
+ self.sanitize_bot_response = sanitize_bot_response
46
+ self.max_input_tokens = max_input_tokens # not for generate, so ok that not kwargs
47
+
48
+ def preprocess(self, prompt_text, prefix="", handle_long_generation=None, **generate_kwargs):
49
+ data_point = dict(context='', instruction=prompt_text, input='')
50
+ if self.prompter is not None:
51
+ prompt_text = self.prompter.generate_prompt(data_point)
52
+ self.prompt_text = prompt_text
53
+ if handle_long_generation is None:
54
+ # forces truncation of inputs to avoid critical failure
55
+ handle_long_generation = 'hole'
56
+ return super().preprocess(prompt_text, prefix=prefix, handle_long_generation=handle_long_generation,
57
+ **generate_kwargs)
58
+
59
+ def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
60
+ records = super().postprocess(model_outputs, return_type=return_type,
61
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces)
62
+ for rec in records:
63
+ if self.use_prompter:
64
+ outputs = rec['generated_text']
65
+ outputs = self.prompter.get_response(outputs, prompt=self.prompt_text,
66
+ sanitize_bot_response=self.sanitize_bot_response)
67
+ elif self.bot and self.human:
68
+ outputs = rec['generated_text'].split(self.bot)[1].strip().split(self.human)[0].strip()
69
+ else:
70
+ outputs = rec['generated_text']
71
+ rec['generated_text'] = outputs
72
+ return records
73
+
74
+ def _forward(self, model_inputs, **generate_kwargs):
75
+ if self.can_stop:
76
+ stopping_criteria = get_stopping(self.prompt_type, self.tokenizer, self.device, human=self.human,
77
+ bot=self.bot)
78
+ generate_kwargs['stopping_criteria'] = stopping_criteria
79
+ # return super()._forward(model_inputs, **generate_kwargs)
80
+ return self.__forward(model_inputs, **generate_kwargs)
81
+
82
+ # FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
83
+ # FIXME: https://github.com/h2oai/h2ogpt/issues/172
84
+ def __forward(self, model_inputs, **generate_kwargs):
85
+ input_ids = model_inputs["input_ids"]
86
+ attention_mask = model_inputs.get("attention_mask", None)
87
+ # Allow empty prompts
88
+ if input_ids.shape[1] == 0:
89
+ input_ids = None
90
+ attention_mask = None
91
+ in_b = 1
92
+ else:
93
+ in_b = input_ids.shape[0]
94
+ prompt_text = model_inputs.pop("prompt_text")
95
+
96
+ ## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
97
+ ## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
98
+ # generate_kwargs = copy.deepcopy(generate_kwargs)
99
+ prefix_length = generate_kwargs.pop("prefix_length", 0)
100
+ if prefix_length > 0:
101
+ has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
102
+ "generation_config" in generate_kwargs
103
+ and generate_kwargs["generation_config"].max_new_tokens is not None
104
+ )
105
+ if not has_max_new_tokens:
106
+ generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.model.config.max_length
107
+ generate_kwargs["max_length"] += prefix_length
108
+ has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
109
+ "generation_config" in generate_kwargs
110
+ and generate_kwargs["generation_config"].min_new_tokens is not None
111
+ )
112
+ if not has_min_new_tokens and "min_length" in generate_kwargs:
113
+ generate_kwargs["min_length"] += prefix_length
114
+
115
+ # BS x SL
116
+ generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
117
+ out_b = generated_sequence.shape[0]
118
+ if self.framework == "pt":
119
+ generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
120
+ elif self.framework == "tf":
121
+ from transformers import is_tf_available
122
+ if is_tf_available():
123
+ import tensorflow as tf
124
+ generated_sequence = tf.reshape(generated_sequence,
125
+ (in_b, out_b // in_b, *generated_sequence.shape[1:]))
126
+ else:
127
+ raise ValueError("TF not avaialble.")
128
+ return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
129
+ import torch
130
+ from transformers import StoppingCriteria, StoppingCriteriaList
131
+
132
+
133
+
134
+ class StoppingCriteriaSub(StoppingCriteria):
135
+
136
+ def __init__(self, stops=[], encounters=[], device="cuda"):
137
+ super().__init__()
138
+ assert len(stops) % len(encounters) == 0, "Number of stops and encounters must match"
139
+ self.encounters = encounters
140
+ self.stops = [stop.to(device) for stop in stops]
141
+ self.num_stops = [0] * len(stops)
142
+
143
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
144
+ for stopi, stop in enumerate(self.stops):
145
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
146
+ self.num_stops[stopi] += 1
147
+ if self.num_stops[stopi] >= self.encounters[stopi % len(self.encounters)]:
148
+ # print("Stopped", flush=True)
149
+ return True
150
+ # print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
151
+ # print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
152
+ return False
153
+
154
+
155
+ def get_stopping(prompt_type, tokenizer, device, human='<human>:', bot="<bot>:"):
156
+ if prompt_type in [PromptType.human_bot.name, PromptType.instruct_vicuna.name, PromptType.instruct_with_end.name]:
157
+ if prompt_type == PromptType.human_bot.name:
158
+ # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
159
+ # stopping only starts once output is beyond prompt
160
+ # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
161
+ stop_words = [human, bot, '\n' + human, '\n' + bot]
162
+ encounters = [1, 2]
163
+ elif prompt_type == PromptType.instruct_vicuna.name:
164
+ # even below is not enough, generic strings and many ways to encode
165
+ stop_words = [
166
+ '### Human:',
167
+ """
168
+ ### Human:""",
169
+ """
170
+ ### Human:
171
+ """,
172
+ '### Assistant:',
173
+ """
174
+ ### Assistant:""",
175
+ """
176
+ ### Assistant:
177
+ """,
178
+ ]
179
+ encounters = [1, 2]
180
+ else:
181
+ # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
182
+ stop_words = ['### End']
183
+ encounters = [1]
184
+ stop_words_ids = [
185
+ tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
186
+ # handle single token case
187
+ stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
188
+ stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
189
+ # avoid padding in front of tokens
190
+ if tokenizer._pad_token: # use hidden variable to avoid annoying properly logger bug
191
+ stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
192
+ # handle fake \n added
193
+ stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
194
+ # build stopper
195
+ stopping_criteria = StoppingCriteriaList(
196
+ [StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters, device=device)])
197
+ else:
198
+ stopping_criteria = StoppingCriteriaList()
199
+ return stopping_criteria
200
+ import time
201
+ from enum import Enum
202
+
203
+ non_hf_types = ['gpt4all_llama', 'llama', 'gptj']
204
+
205
+
206
+ class PromptType(Enum):
207
+ plain = 0
208
+ instruct = 1
209
+ quality = 2
210
+ human_bot = 3
211
+ dai_faq = 4
212
+ summarize = 5
213
+ simple_instruct = 6
214
+ instruct_vicuna = 7
215
+ instruct_with_end = 8
216
+ human_bot_orig = 9
217
+ prompt_answer = 10
218
+ open_assistant = 11
219
+ wizard_lm = 12
220
+ wizard_mega = 13
221
+ instruct_vicuna2 = 14
222
+ instruct_vicuna3 = 15
223
+ wizard2 = 16
224
+ wizard3 = 17
225
+
226
+
227
+ prompt_type_to_model_name = {
228
+ 'plain': [
229
+ 'EleutherAI/gpt-j-6B',
230
+ 'EleutherAI/pythia-6.9b',
231
+ 'EleutherAI/pythia-12b',
232
+ 'EleutherAI/pythia-12b-deduped',
233
+ 'EleutherAI/gpt-neox-20b',
234
+ 'openlm-research/open_llama_7b_700bt_preview',
235
+ 'decapoda-research/llama-7b-hf',
236
+ 'decapoda-research/llama-13b-hf',
237
+ 'decapoda-research/llama-30b-hf',
238
+ 'decapoda-research/llama-65b-hf',
239
+ 'facebook/mbart-large-50-many-to-many-mmt',
240
+ 'philschmid/bart-large-cnn-samsum',
241
+ 'philschmid/flan-t5-base-samsum',
242
+ 'gpt2',
243
+ 'distilgpt2',
244
+ 'mosaicml/mpt-7b-storywriter',
245
+ 'mosaicml/mpt-7b-instruct', # internal code handles instruct
246
+ 'mosaicml/mpt-7b-chat', # NC, internal code handles instruct
247
+ 'gptj', # internally handles prompting
248
+ 'llama', # plain, or need to choose prompt_type for given TheBloke model
249
+ 'gpt4all_llama', # internally handles prompting
250
+ ],
251
+ 'prompt_answer': [
252
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-20b',
253
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-12b',
254
+ 'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b',
255
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt',
256
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2',
257
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-700bt',
258
+ ],
259
+ 'instruct': [],
260
+ 'instruct_with_end': ['databricks/dolly-v2-12b'],
261
+ 'quality': [],
262
+ 'human_bot': [
263
+ 'h2oai/h2ogpt-oasst1-512-12b',
264
+ 'h2oai/h2ogpt-oasst1-512-20b',
265
+ 'h2oai/h2ogpt-oig-oasst1-256-6_9b',
266
+ 'h2oai/h2ogpt-oig-oasst1-512-6_9b',
267
+ 'h2oai/h2ogpt-oig-oasst1-256-6.9b', # legacy
268
+ 'h2oai/h2ogpt-oig-oasst1-512-6.9b', # legacy
269
+ 'h2oai/h2ogpt-research-oasst1-512-30b',
270
+ 'h2oai/h2ogpt-oasst1-falcon-40b',
271
+ ],
272
+ 'dai_faq': [],
273
+ 'summarize': [],
274
+ 'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'],
275
+ 'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b', 'TheBloke/stable-vicuna-13B-HF', 'junelee/wizard-vicuna-13b'],
276
+ 'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'],
277
+ "open_assistant": ['OpenAssistant/oasst-sft-7-llama-30b-xor', 'oasst-sft-7-llama-30b'],
278
+ "wizard_lm": ['ehartford/WizardLM-7B-Uncensored', 'ehartford/WizardLM-13B-Uncensored'],
279
+ "wizard_mega": ['openaccess-ai-collective/wizard-mega-13b'],
280
+ }
281
+
282
+ inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l}
283
+ inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l}
284
+
285
+ prompt_types_strings = []
286
+ for p in PromptType:
287
+ prompt_types_strings.extend([p.name])
288
+
289
+ prompt_types = []
290
+ for p in PromptType:
291
+ prompt_types.extend([p.name, p.value, str(p.value)])
292
+
293
+
294
+ def get_prompt(prompt_type, chat, context, reduced):
295
+ if prompt_type in [PromptType.plain.value, str(PromptType.plain.value),
296
+ PromptType.plain.name]:
297
+ promptA = promptB = PreInstruct = PreInput = PreResponse = ''
298
+ terminate_response = []
299
+ chat_sep = ''
300
+ humanstr = ''
301
+ botstr = ''
302
+ elif prompt_type == 'simple_instruct':
303
+ promptA = promptB = PreInstruct = PreInput = PreResponse = None
304
+ terminate_response = []
305
+ chat_sep = '\n'
306
+ humanstr = ''
307
+ botstr = ''
308
+ elif prompt_type in [PromptType.instruct.value, str(PromptType.instruct.value),
309
+ PromptType.instruct.name] + [PromptType.instruct_with_end.value,
310
+ str(PromptType.instruct_with_end.value),
311
+ PromptType.instruct_with_end.name]:
312
+ promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not (
313
+ chat and reduced) else ''
314
+ promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not (
315
+ chat and reduced) else ''
316
+
317
+ PreInstruct = """
318
+ ### Instruction:
319
+ """
320
+
321
+ PreInput = """
322
+ ### Input:
323
+ """
324
+
325
+ PreResponse = """
326
+ ### Response:
327
+ """
328
+ if prompt_type in [PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value),
329
+ PromptType.instruct_with_end.name]:
330
+ terminate_response = ['### End']
331
+ else:
332
+ terminate_response = None
333
+ chat_sep = '\n'
334
+ humanstr = PreInstruct
335
+ botstr = PreResponse
336
+ elif prompt_type in [PromptType.quality.value, str(PromptType.quality.value),
337
+ PromptType.quality.name]:
338
+ promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not (
339
+ chat and reduced) else ''
340
+ promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not (
341
+ chat and reduced) else ''
342
+
343
+ PreInstruct = """
344
+ ### Instruction:
345
+ """
346
+
347
+ PreInput = """
348
+ ### Input:
349
+ """
350
+
351
+ PreResponse = """
352
+ ### Response:
353
+ """
354
+ terminate_response = None
355
+ chat_sep = '\n'
356
+ humanstr = PreInstruct # first thing human says
357
+ botstr = PreResponse # first thing bot says
358
+ elif prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
359
+ PromptType.human_bot.name] + [PromptType.human_bot_orig.value,
360
+ str(PromptType.human_bot_orig.value),
361
+ PromptType.human_bot_orig.name]:
362
+ human = '<human>:'
363
+ bot = "<bot>:"
364
+ if reduced or context or prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value),
365
+ PromptType.human_bot.name]:
366
+ preprompt = ''
367
+ else:
368
+ cur_date = time.strftime('%Y-%m-%d')
369
+ cur_time = time.strftime('%H:%M:%S %p %Z')
370
+
371
+ PRE_PROMPT = """\
372
+ Current Date: {}
373
+ Current Time: {}
374
+
375
+ """
376
+ preprompt = PRE_PROMPT.format(cur_date, cur_time)
377
+ start = human
378
+ promptB = promptA = '%s%s ' % (preprompt, start)
379
+
380
+ PreInstruct = ""
381
+
382
+ PreInput = None
383
+
384
+ if reduced:
385
+ # when making context, want it to appear as-if LLM generated, which starts with space after :
386
+ PreResponse = bot + ' '
387
+ else:
388
+ # normally LLM adds space after this, because was how trained.
389
+ # if add space here, non-unique tokenization will often make LLM produce wrong output
390
+ PreResponse = bot
391
+
392
+ terminate_response = [start, PreResponse]
393
+ chat_sep = '\n'
394
+ humanstr = human # tag before human talks
395
+ botstr = bot # tag before bot talks
396
+ elif prompt_type in [PromptType.dai_faq.value, str(PromptType.dai_faq.value),
397
+ PromptType.dai_faq.name]:
398
+ promptA = ''
399
+ promptB = 'Answer the following Driverless AI question.\n'
400
+
401
+ PreInstruct = """
402
+ ### Driverless AI frequently asked question:
403
+ """
404
+
405
+ PreInput = None
406
+
407
+ PreResponse = """
408
+ ### Driverless AI documentation answer:
409
+ """
410
+ terminate_response = ['\n\n']
411
+ chat_sep = terminate_response
412
+ humanstr = PreInstruct
413
+ botstr = PreResponse
414
+ elif prompt_type in [PromptType.summarize.value, str(PromptType.summarize.value),
415
+ PromptType.summarize.name]:
416
+ promptA = promptB = PreInput = ''
417
+ PreInstruct = '## Main Text\n\n'
418
+ PreResponse = '\n\n## Summary\n\n'
419
+ terminate_response = None
420
+ chat_sep = '\n'
421
+ humanstr = PreInstruct
422
+ botstr = PreResponse
423
+ elif prompt_type in [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value),
424
+ PromptType.instruct_vicuna.name]:
425
+ promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \
426
+ "The assistant gives helpful, detailed, and polite answers to the human's questions." if not (
427
+ chat and reduced) else ''
428
+
429
+ PreInstruct = """
430
+ ### Human:
431
+ """
432
+
433
+ PreInput = None
434
+
435
+ PreResponse = """
436
+ ### Assistant:
437
+ """
438
+ terminate_response = [
439
+ '### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate
440
+ chat_sep = '\n'
441
+ humanstr = PreInstruct
442
+ botstr = PreResponse
443
+ elif prompt_type in [PromptType.prompt_answer.value, str(PromptType.prompt_answer.value),
444
+ PromptType.prompt_answer.name]:
445
+ preprompt = ''
446
+ prompt_tokens = "<|prompt|>"
447
+ answer_tokens = "<|answer|>"
448
+ start = prompt_tokens
449
+ promptB = promptA = '%s%s' % (preprompt, start)
450
+ PreInstruct = ""
451
+ PreInput = None
452
+ PreResponse = answer_tokens
453
+ eos = '<|endoftext|>' # neox eos
454
+ terminate_response = [start, PreResponse, eos]
455
+ chat_sep = eos
456
+ humanstr = prompt_tokens
457
+ botstr = answer_tokens
458
+ elif prompt_type in [PromptType.open_assistant.value, str(PromptType.open_assistant.value),
459
+ PromptType.open_assistant.name]:
460
+ # From added_tokens.json
461
+ preprompt = ''
462
+ prompt_tokens = "<|prompter|>"
463
+ answer_tokens = "<|assistant|>"
464
+ start = prompt_tokens
465
+ promptB = promptA = '%s%s' % (preprompt, start)
466
+ PreInstruct = ""
467
+ PreInput = None
468
+ PreResponse = answer_tokens
469
+ pend = "<|prefix_end|>"
470
+ eos = "</s>"
471
+ terminate_response = [start, PreResponse, pend, eos]
472
+ chat_sep = eos
473
+ humanstr = prompt_tokens
474
+ botstr = answer_tokens
475
+ elif prompt_type in [PromptType.wizard_lm.value, str(PromptType.wizard_lm.value),
476
+ PromptType.wizard_lm.name]:
477
+ # https://github.com/ehartford/WizardLM/blob/main/src/train_freeform.py
478
+ preprompt = ''
479
+ start = ''
480
+ promptB = promptA = '%s%s' % (preprompt, start)
481
+ PreInstruct = ""
482
+ PreInput = None
483
+ PreResponse = "\n\n### Response\n"
484
+ eos = "</s>"
485
+ terminate_response = [PreResponse, eos]
486
+ chat_sep = eos
487
+ humanstr = promptA
488
+ botstr = PreResponse
489
+ elif prompt_type in [PromptType.wizard_mega.value, str(PromptType.wizard_mega.value),
490
+ PromptType.wizard_mega.name]:
491
+ preprompt = ''
492
+ start = ''
493
+ promptB = promptA = '%s%s' % (preprompt, start)
494
+ PreInstruct = """
495
+ ### Instruction:
496
+ """
497
+ PreInput = None
498
+ PreResponse = """
499
+ ### Assistant:
500
+ """
501
+ terminate_response = [PreResponse]
502
+ chat_sep = '\n'
503
+ humanstr = PreInstruct
504
+ botstr = PreResponse
505
+ elif prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value),
506
+ PromptType.instruct_vicuna2.name]:
507
+ promptA = promptB = "" if not (
508
+ chat and reduced) else ''
509
+
510
+ PreInstruct = """
511
+ HUMAN:
512
+ """
513
+
514
+ PreInput = None
515
+
516
+ PreResponse = """
517
+ ASSISTANT:
518
+ """
519
+ terminate_response = [
520
+ 'HUMAN:'] # but only allow terminate after prompt is found correctly, else can't terminate
521
+ chat_sep = '\n'
522
+ humanstr = PreInstruct
523
+ botstr = PreResponse
524
+ elif prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value),
525
+ PromptType.instruct_vicuna3.name]:
526
+ promptA = promptB = "" if not (
527
+ chat and reduced) else ''
528
+
529
+ PreInstruct = """
530
+ ### User:
531
+ """
532
+
533
+ PreInput = None
534
+
535
+ PreResponse = """
536
+ ### Assistant:
537
+ """
538
+ terminate_response = [
539
+ '### User:'] # but only allow terminate after prompt is found correctly, else can't terminate
540
+ chat_sep = '\n'
541
+ humanstr = PreInstruct
542
+ botstr = PreResponse
543
+ elif prompt_type in [PromptType.wizard2.value, str(PromptType.wizard2.value),
544
+ PromptType.wizard2.name]:
545
+ # https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML
546
+ preprompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request."""
547
+ start = ''
548
+ promptB = promptA = '%s%s' % (preprompt, start)
549
+ PreInstruct = """
550
+ ### Instruction:
551
+ """
552
+ PreInput = None
553
+ PreResponse = """
554
+ ### Response:
555
+ """
556
+ terminate_response = [PreResponse]
557
+ chat_sep = '\n'
558
+ humanstr = PreInstruct
559
+ botstr = PreResponse
560
+ elif prompt_type in [PromptType.wizard3.value, str(PromptType.wizard3.value),
561
+ PromptType.wizard3.name]:
562
+ # https://huggingface.co/TheBloke/wizardLM-13B-1.0-GGML
563
+ preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."""
564
+ start = ''
565
+ promptB = promptA = '%s%s' % (preprompt, start)
566
+ PreInstruct = """USER: """
567
+ PreInput = None
568
+ PreResponse = """ASSISTANT: """
569
+ terminate_response = [PreResponse]
570
+ chat_sep = '\n'
571
+ humanstr = PreInstruct
572
+ botstr = PreResponse
573
+
574
+ else:
575
+ raise RuntimeError("No such prompt_type=%s" % prompt_type)
576
+
577
+ return promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response, chat_sep, humanstr, botstr
578
+
579
+
580
+ def generate_prompt(data_point, prompt_type, chat, reduced):
581
+ context = data_point.get('context')
582
+ if context is None:
583
+ context = ''
584
+ instruction = data_point.get('instruction')
585
+ input = data_point.get('input')
586
+ output = data_point.get('output')
587
+ prompt_type = data_point.get('prompt_type', prompt_type)
588
+ assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
589
+ promptA, promptB, PreInstruct, PreInput, PreResponse, \
590
+ terminate_response, chat_sep, humanstr, botstr = get_prompt(prompt_type, chat, context, reduced)
591
+
592
+ prompt = context if not reduced else ''
593
+
594
+ if input and promptA:
595
+ prompt += f"""{promptA}"""
596
+ elif promptB:
597
+ prompt += f"""{promptB}"""
598
+
599
+ if instruction and PreInstruct is not None and input and PreInput is not None:
600
+ prompt += f"""{PreInstruct}{instruction}{PreInput}{input}"""
601
+ prompt = inject_newline(prompt_type, prompt)
602
+ elif instruction and input and PreInstruct is None and PreInput is not None:
603
+ prompt += f"""{PreInput}{instruction}
604
+ {input}"""
605
+ prompt = inject_newline(prompt_type, prompt)
606
+ elif input and instruction and PreInput is None and PreInstruct is not None:
607
+ prompt += f"""{PreInstruct}{instruction}
608
+ {input}"""
609
+ prompt = inject_newline(prompt_type, prompt)
610
+ elif instruction and PreInstruct is not None:
611
+ prompt += f"""{PreInstruct}{instruction}"""
612
+ prompt = inject_newline(prompt_type, prompt)
613
+ elif input and PreInput is not None:
614
+ prompt += f"""{PreInput}{input}"""
615
+ prompt = inject_newline(prompt_type, prompt)
616
+ elif input and instruction and PreInput is not None:
617
+ prompt += f"""{PreInput}{instruction}{input}"""
618
+ prompt = inject_newline(prompt_type, prompt)
619
+ elif input and instruction and PreInstruct is not None:
620
+ prompt += f"""{PreInstruct}{instruction}{input}"""
621
+ prompt = inject_newline(prompt_type, prompt)
622
+ elif input and instruction:
623
+ # i.e. for simple_instruct
624
+ prompt += f"""{instruction}: {input}"""
625
+ prompt = inject_newline(prompt_type, prompt)
626
+ elif input:
627
+ prompt += f"""{input}"""
628
+ prompt = inject_newline(prompt_type, prompt)
629
+ elif instruction:
630
+ prompt += f"""{instruction}"""
631
+ prompt = inject_newline(prompt_type, prompt)
632
+
633
+ if PreResponse is not None:
634
+ prompt += f"""{PreResponse}"""
635
+ pre_response = PreResponse # Don't use strip
636
+ else:
637
+ pre_response = ''
638
+
639
+ if output:
640
+ prompt += f"""{output}"""
641
+
642
+ return prompt, pre_response, terminate_response, chat_sep
643
+
644
+
645
+ def inject_newline(prompt_type, prompt):
646
+ if prompt_type not in [-1, '-1', 'plain', 'simple_instruct']:
647
+ # only add new line if structured prompt, while 'plain' is just generation of next tokens from input
648
+ prompt += '\n'
649
+ return prompt
650
+
651
+
652
+ class Prompter(object):
653
+ def __init__(self, prompt_type, debug=False, chat=False, stream_output=False, repeat_penalty=True,
654
+ allowed_repeat_line_length=10):
655
+ self.prompt_type = prompt_type
656
+ data_point = dict(instruction='', input='', output='')
657
+ _, self.pre_response, self.terminate_response, self.chat_sep = \
658
+ generate_prompt(data_point, prompt_type, chat, False)
659
+ self.debug = debug
660
+ self.chat = chat
661
+ self.stream_output = stream_output
662
+ self.repeat_penalty = repeat_penalty
663
+ self.allowed_repeat_line_length = allowed_repeat_line_length
664
+ self.prompt = None
665
+ context = "" # not for chat context
666
+ reduced = False # not for chat context
667
+ self.promptA, self.promptB, self.PreInstruct, self.PreInput, self.PreResponse, \
668
+ self.terminate_response, self.chat_sep, self.humanstr, self.botstr = \
669
+ get_prompt(prompt_type, chat, context, reduced)
670
+
671
+ def generate_prompt(self, data_point):
672
+ reduced = False
673
+ prompt, _, _, _ = generate_prompt(data_point, self.prompt_type, self.chat, reduced)
674
+ if self.debug:
675
+ print("prompt: ", prompt, flush=True)
676
+ self.prompt = prompt
677
+ return prompt
678
+
679
+ def get_response(self, outputs, prompt=None, sanitize_bot_response=True):
680
+ if isinstance(outputs, str):
681
+ outputs = [outputs]
682
+ if self.debug:
683
+ print("output:\n", '\n\n'.join(outputs), flush=True)
684
+ if prompt is not None:
685
+ self.prompt = prompt
686
+
687
+ def clean_response(response):
688
+ meaningless_words = ['<pad>', '</s>', '<|endoftext|>']
689
+ for word in meaningless_words:
690
+ response = response.replace(word, "")
691
+ if sanitize_bot_response:
692
+ from better_profanity import profanity
693
+ response = profanity.censor(response)
694
+ response = response.strip("\n")
695
+ return response
696
+
697
+ def clean_repeats(response):
698
+ lines = response.split('\n')
699
+ new_lines = []
700
+ [new_lines.append(line) for line in lines if
701
+ line not in new_lines or len(line) < self.allowed_repeat_line_length]
702
+ if self.debug and len(lines) != len(new_lines):
703
+ print("cleaned repeats: %s %s" % (len(lines), len(new_lines)), flush=True)
704
+ response = '\n'.join(new_lines)
705
+ return response
706
+
707
+ multi_output = len(outputs) > 1
708
+
709
+ for oi, output in enumerate(outputs):
710
+ if self.prompt_type in [PromptType.plain.value, str(PromptType.plain.value), PromptType.plain.name]:
711
+ output = clean_response(output)
712
+ elif prompt is None:
713
+ # then use most basic parsing like pipeline
714
+ if self.botstr in output:
715
+ if self.humanstr:
716
+ output = clean_response(output.split(self.botstr)[1].strip().split(self.humanstr)[0].strip())
717
+ else:
718
+ # i.e. use after bot but only up to next bot
719
+ output = clean_response(output.split(self.botstr)[1].strip().split(self.botstr)[0].strip())
720
+ else:
721
+ # output = clean_response(output.strip())
722
+ # assume just not printed yet
723
+ output = ""
724
+ else:
725
+ # find first instance of prereponse
726
+ # prompt sometimes has odd characters, that mutate length,
727
+ # so can't go by length alone
728
+ if self.pre_response:
729
+ outputi = output.find(prompt)
730
+ if outputi >= 0:
731
+ output = output[outputi + len(prompt):]
732
+ allow_terminate = True
733
+ else:
734
+ # subtraction is risky due to space offsets sometimes, so only do if necessary
735
+ output = output[len(prompt) - len(self.pre_response):]
736
+ # [1] to avoid repeated pre_response, just take first (after prompt - pre_response for chat)
737
+ if self.pre_response in output:
738
+ output = output.split(self.pre_response)[1]
739
+ allow_terminate = True
740
+ else:
741
+ if output:
742
+ print("Failure of parsing or not enough output yet: %s" % output, flush=True)
743
+ allow_terminate = False
744
+ else:
745
+ allow_terminate = True
746
+ output = output[len(prompt):]
747
+ # clean after subtract prompt out, so correct removal of pre_response
748
+ output = clean_response(output).strip()
749
+ if self.repeat_penalty:
750
+ output = clean_repeats(output).strip()
751
+ if self.terminate_response and allow_terminate:
752
+ finds = []
753
+ for term in self.terminate_response:
754
+ finds.append(output.find(term))
755
+ finds = [x for x in finds if x >= 0]
756
+ if len(finds) > 0:
757
+ termi = finds[0]
758
+ output = output[:termi].strip()
759
+ else:
760
+ output = output.strip()
761
+ else:
762
+ output = output.strip()
763
+ if multi_output:
764
+ # prefix with output counter
765
+ output = "\n=========== Output %d\n\n" % (1 + oi) + output
766
+ if oi > 0:
767
+ # post fix outputs with seperator
768
+ output += '\n'
769
+ outputs[oi] = output
770
+ # join all outputs, only one extra new line between outputs
771
+ output = '\n'.join(outputs)
772
+ if self.debug:
773
+ print("outputclean:\n", '\n\n'.join(outputs), flush=True)
774
+ return output
pytorch_model-00001-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6759cb7f56922efdd1b7eadb04c28150883378c574c18cdda309162c8eed9d49
3
+ size 4605550559
pytorch_model-00002-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dcba8d2ec7b7788ea31e52c938a44187e7895a7f77e2de947b918ff4f5059b0
3
+ size 4899219433
pytorch_model-00003-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dde2dceef6a3806e1542323b2203e519eb80942adf81a8af3c25aefcf5c4b1a
3
+ size 4613939365
pytorch_model-00004-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3e0d9e39b57071facfb524736219e7788e1b159ae54755bd785c3ef400c57b2
3
+ size 4899219497
pytorch_model-00005-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72693bbc7b09e5cd5e5f98261a10a4bb842efa3acf977aa14800735794246ab2
3
+ size 4613939429
pytorch_model-00006-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b355e2c4beeb82dfbc96e0d896e2b14171cd7e1facea0c56a0e84b0fdb6cae74
3
+ size 4899219497
pytorch_model-00007-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a56eb695b4510c9db91ef0aaa4f4d4b977a20e78c6a21975cf618c8dd8928d1c
3
+ size 4613939429
pytorch_model-00008-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aef35e36a1c807ab81accb4e5366d2e84eec19c3912637e3510788c19220d0a7
3
+ size 4899219497
pytorch_model-00009-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e71270a91ca71b247ab77d7181ac37204c92a1c046d7a37d0c34f520f618a0
3
+ size 4613939429
pytorch_model-00010-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be04c37a40d6ad3dee1ce0f89accc44142ede1fa96de3a1be1af995a9ce3d35
3
+ size 4899219497
pytorch_model-00011-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86fdbc48099e78ef58aa7426b15a7a13b7ef5c0a892f58edb2f079f65b16e9e9
3
+ size 4613939429
pytorch_model-00012-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8295ef7e4c878e1b7a3209ae0e4af8b9e0e4b2725a8752cf8148e53f55f65995
3
+ size 4899219497
pytorch_model-00013-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9340525be56f3d1b40206542a5dab95e5e48896012a3dffaccb14f0550ff5fd
3
+ size 4613939429
pytorch_model-00014-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67671259aa7aa95f2b4de2edc8e781c8b011c29ad0a6c5a96e5213f1d273d6bb
3
+ size 4899219497
pytorch_model-00015-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db276197987bf7716b16a237f6a054537b2ee921171b97c1080ecc41ba1770f5
3
+ size 4613939429
pytorch_model-00016-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0152922ced49b95e8aa229c60ce3f7086d2779aaa454c4d1aeb497663a969c35
3
+ size 4899219497
pytorch_model-00017-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1ab82290d28bdf08849e25c19b13e3e47fb55234606b8b14e5c6598dfaf5003
3
+ size 4613939429
pytorch_model-00018-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ce6db21ff11306937c647414ce838f8d7c013680046ac50c8ed747e8896aac
3
+ size 1895927701
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 82606587904
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00018.bin",
7
+ "transformer.h.0.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
8
+ "transformer.h.0.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
9
+ "transformer.h.0.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
10
+ "transformer.h.0.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
11
+ "transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
12
+ "transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
13
+ "transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
14
+ "transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
15
+ "transformer.h.1.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
16
+ "transformer.h.1.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
17
+ "transformer.h.1.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
18
+ "transformer.h.1.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
19
+ "transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
20
+ "transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
21
+ "transformer.h.1.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
22
+ "transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
23
+ "transformer.h.10.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
24
+ "transformer.h.10.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
25
+ "transformer.h.10.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
26
+ "transformer.h.10.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
27
+ "transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
28
+ "transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
29
+ "transformer.h.10.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
30
+ "transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
31
+ "transformer.h.11.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
32
+ "transformer.h.11.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
33
+ "transformer.h.11.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
34
+ "transformer.h.11.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
35
+ "transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
36
+ "transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
37
+ "transformer.h.11.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
38
+ "transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
39
+ "transformer.h.12.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
40
+ "transformer.h.12.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
41
+ "transformer.h.12.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
42
+ "transformer.h.12.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
43
+ "transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
44
+ "transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
45
+ "transformer.h.12.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
46
+ "transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
47
+ "transformer.h.13.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
48
+ "transformer.h.13.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
49
+ "transformer.h.13.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
50
+ "transformer.h.13.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
51
+ "transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
52
+ "transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
53
+ "transformer.h.13.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
54
+ "transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
55
+ "transformer.h.14.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
56
+ "transformer.h.14.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
57
+ "transformer.h.14.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
58
+ "transformer.h.14.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
59
+ "transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
60
+ "transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
61
+ "transformer.h.14.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
62
+ "transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
63
+ "transformer.h.15.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
64
+ "transformer.h.15.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
65
+ "transformer.h.15.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
66
+ "transformer.h.15.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
67
+ "transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
68
+ "transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
69
+ "transformer.h.15.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
70
+ "transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
71
+ "transformer.h.16.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
72
+ "transformer.h.16.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
73
+ "transformer.h.16.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
74
+ "transformer.h.16.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
75
+ "transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
76
+ "transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
77
+ "transformer.h.16.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
78
+ "transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
79
+ "transformer.h.17.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
80
+ "transformer.h.17.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
81
+ "transformer.h.17.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
82
+ "transformer.h.17.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
83
+ "transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
84
+ "transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
85
+ "transformer.h.17.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
86
+ "transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
87
+ "transformer.h.18.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
88
+ "transformer.h.18.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
89
+ "transformer.h.18.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
90
+ "transformer.h.18.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
91
+ "transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
92
+ "transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
93
+ "transformer.h.18.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
94
+ "transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
95
+ "transformer.h.19.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
96
+ "transformer.h.19.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
97
+ "transformer.h.19.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
98
+ "transformer.h.19.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
99
+ "transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
100
+ "transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
101
+ "transformer.h.19.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
102
+ "transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
103
+ "transformer.h.2.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
104
+ "transformer.h.2.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
105
+ "transformer.h.2.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
106
+ "transformer.h.2.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
107
+ "transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
108
+ "transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
109
+ "transformer.h.2.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
110
+ "transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
111
+ "transformer.h.20.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
112
+ "transformer.h.20.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
113
+ "transformer.h.20.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
114
+ "transformer.h.20.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
115
+ "transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
116
+ "transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
117
+ "transformer.h.20.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
118
+ "transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
119
+ "transformer.h.21.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
120
+ "transformer.h.21.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
121
+ "transformer.h.21.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
122
+ "transformer.h.21.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
123
+ "transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
124
+ "transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
125
+ "transformer.h.21.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
126
+ "transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
127
+ "transformer.h.22.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
128
+ "transformer.h.22.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
129
+ "transformer.h.22.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
130
+ "transformer.h.22.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
131
+ "transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
132
+ "transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
133
+ "transformer.h.22.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
134
+ "transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
135
+ "transformer.h.23.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
136
+ "transformer.h.23.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
137
+ "transformer.h.23.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
138
+ "transformer.h.23.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
139
+ "transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
140
+ "transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
141
+ "transformer.h.23.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
142
+ "transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
143
+ "transformer.h.24.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
144
+ "transformer.h.24.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
145
+ "transformer.h.24.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
146
+ "transformer.h.24.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
147
+ "transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
148
+ "transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
149
+ "transformer.h.24.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
150
+ "transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
151
+ "transformer.h.25.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
152
+ "transformer.h.25.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
153
+ "transformer.h.25.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
154
+ "transformer.h.25.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
155
+ "transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
156
+ "transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
157
+ "transformer.h.25.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
158
+ "transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
159
+ "transformer.h.26.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
160
+ "transformer.h.26.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
161
+ "transformer.h.26.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
162
+ "transformer.h.26.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
163
+ "transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
164
+ "transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
165
+ "transformer.h.26.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
166
+ "transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
167
+ "transformer.h.27.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
168
+ "transformer.h.27.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
169
+ "transformer.h.27.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
170
+ "transformer.h.27.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
171
+ "transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
172
+ "transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
173
+ "transformer.h.27.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
174
+ "transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
175
+ "transformer.h.28.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
176
+ "transformer.h.28.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
177
+ "transformer.h.28.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
178
+ "transformer.h.28.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
179
+ "transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
180
+ "transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
181
+ "transformer.h.28.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
182
+ "transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
183
+ "transformer.h.29.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
184
+ "transformer.h.29.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
185
+ "transformer.h.29.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
186
+ "transformer.h.29.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
187
+ "transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
188
+ "transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
189
+ "transformer.h.29.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
190
+ "transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
191
+ "transformer.h.3.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
192
+ "transformer.h.3.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
193
+ "transformer.h.3.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
194
+ "transformer.h.3.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
195
+ "transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
196
+ "transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
197
+ "transformer.h.3.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
198
+ "transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
199
+ "transformer.h.30.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
200
+ "transformer.h.30.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
201
+ "transformer.h.30.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
202
+ "transformer.h.30.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
203
+ "transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
204
+ "transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
205
+ "transformer.h.30.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
206
+ "transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
207
+ "transformer.h.31.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
208
+ "transformer.h.31.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
209
+ "transformer.h.31.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
210
+ "transformer.h.31.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
211
+ "transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
212
+ "transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
213
+ "transformer.h.31.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
214
+ "transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
215
+ "transformer.h.32.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
216
+ "transformer.h.32.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
217
+ "transformer.h.32.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
218
+ "transformer.h.32.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
219
+ "transformer.h.32.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
220
+ "transformer.h.32.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
221
+ "transformer.h.32.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
222
+ "transformer.h.32.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
223
+ "transformer.h.33.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
224
+ "transformer.h.33.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
225
+ "transformer.h.33.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
226
+ "transformer.h.33.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
227
+ "transformer.h.33.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
228
+ "transformer.h.33.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
229
+ "transformer.h.33.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
230
+ "transformer.h.33.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
231
+ "transformer.h.34.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
232
+ "transformer.h.34.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
233
+ "transformer.h.34.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
234
+ "transformer.h.34.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
235
+ "transformer.h.34.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
236
+ "transformer.h.34.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
237
+ "transformer.h.34.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
238
+ "transformer.h.34.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
239
+ "transformer.h.35.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
240
+ "transformer.h.35.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
241
+ "transformer.h.35.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
242
+ "transformer.h.35.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
243
+ "transformer.h.35.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
244
+ "transformer.h.35.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
245
+ "transformer.h.35.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
246
+ "transformer.h.35.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
247
+ "transformer.h.36.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
248
+ "transformer.h.36.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
249
+ "transformer.h.36.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
250
+ "transformer.h.36.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
251
+ "transformer.h.36.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
252
+ "transformer.h.36.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
253
+ "transformer.h.36.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
254
+ "transformer.h.36.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
255
+ "transformer.h.37.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
256
+ "transformer.h.37.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
257
+ "transformer.h.37.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
258
+ "transformer.h.37.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
259
+ "transformer.h.37.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
260
+ "transformer.h.37.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
261
+ "transformer.h.37.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
262
+ "transformer.h.37.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
263
+ "transformer.h.38.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
264
+ "transformer.h.38.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
265
+ "transformer.h.38.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
266
+ "transformer.h.38.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
267
+ "transformer.h.38.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
268
+ "transformer.h.38.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
269
+ "transformer.h.38.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
270
+ "transformer.h.38.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
271
+ "transformer.h.39.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
272
+ "transformer.h.39.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
273
+ "transformer.h.39.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
274
+ "transformer.h.39.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
275
+ "transformer.h.39.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
276
+ "transformer.h.39.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
277
+ "transformer.h.39.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
278
+ "transformer.h.39.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
279
+ "transformer.h.4.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
280
+ "transformer.h.4.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
281
+ "transformer.h.4.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
282
+ "transformer.h.4.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
283
+ "transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
284
+ "transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
285
+ "transformer.h.4.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
286
+ "transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
287
+ "transformer.h.40.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
288
+ "transformer.h.40.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
289
+ "transformer.h.40.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
290
+ "transformer.h.40.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
291
+ "transformer.h.40.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
292
+ "transformer.h.40.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
293
+ "transformer.h.40.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
294
+ "transformer.h.40.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
295
+ "transformer.h.41.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
296
+ "transformer.h.41.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
297
+ "transformer.h.41.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
298
+ "transformer.h.41.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
299
+ "transformer.h.41.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
300
+ "transformer.h.41.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
301
+ "transformer.h.41.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
302
+ "transformer.h.41.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
303
+ "transformer.h.42.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
304
+ "transformer.h.42.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
305
+ "transformer.h.42.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
306
+ "transformer.h.42.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
307
+ "transformer.h.42.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
308
+ "transformer.h.42.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
309
+ "transformer.h.42.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
310
+ "transformer.h.42.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
311
+ "transformer.h.43.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
312
+ "transformer.h.43.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
313
+ "transformer.h.43.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
314
+ "transformer.h.43.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
315
+ "transformer.h.43.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
316
+ "transformer.h.43.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
317
+ "transformer.h.43.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
318
+ "transformer.h.43.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
319
+ "transformer.h.44.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
320
+ "transformer.h.44.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
321
+ "transformer.h.44.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
322
+ "transformer.h.44.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
323
+ "transformer.h.44.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
324
+ "transformer.h.44.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
325
+ "transformer.h.44.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
326
+ "transformer.h.44.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
327
+ "transformer.h.45.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
328
+ "transformer.h.45.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
329
+ "transformer.h.45.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
330
+ "transformer.h.45.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
331
+ "transformer.h.45.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
332
+ "transformer.h.45.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
333
+ "transformer.h.45.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
334
+ "transformer.h.45.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
335
+ "transformer.h.46.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
336
+ "transformer.h.46.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
337
+ "transformer.h.46.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
338
+ "transformer.h.46.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
339
+ "transformer.h.46.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
340
+ "transformer.h.46.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
341
+ "transformer.h.46.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
342
+ "transformer.h.46.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
343
+ "transformer.h.47.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
344
+ "transformer.h.47.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
345
+ "transformer.h.47.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
346
+ "transformer.h.47.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
347
+ "transformer.h.47.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
348
+ "transformer.h.47.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
349
+ "transformer.h.47.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
350
+ "transformer.h.47.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
351
+ "transformer.h.48.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
352
+ "transformer.h.48.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
353
+ "transformer.h.48.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
354
+ "transformer.h.48.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
355
+ "transformer.h.48.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
356
+ "transformer.h.48.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
357
+ "transformer.h.48.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
358
+ "transformer.h.48.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
359
+ "transformer.h.49.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
360
+ "transformer.h.49.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
361
+ "transformer.h.49.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
362
+ "transformer.h.49.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
363
+ "transformer.h.49.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
364
+ "transformer.h.49.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
365
+ "transformer.h.49.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
366
+ "transformer.h.49.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
367
+ "transformer.h.5.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
368
+ "transformer.h.5.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
369
+ "transformer.h.5.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
370
+ "transformer.h.5.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
371
+ "transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
372
+ "transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
373
+ "transformer.h.5.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
374
+ "transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
375
+ "transformer.h.50.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
376
+ "transformer.h.50.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
377
+ "transformer.h.50.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
378
+ "transformer.h.50.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
379
+ "transformer.h.50.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
380
+ "transformer.h.50.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
381
+ "transformer.h.50.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
382
+ "transformer.h.50.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
383
+ "transformer.h.51.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
384
+ "transformer.h.51.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
385
+ "transformer.h.51.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
386
+ "transformer.h.51.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
387
+ "transformer.h.51.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
388
+ "transformer.h.51.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
389
+ "transformer.h.51.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
390
+ "transformer.h.51.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
391
+ "transformer.h.52.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
392
+ "transformer.h.52.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
393
+ "transformer.h.52.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
394
+ "transformer.h.52.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
395
+ "transformer.h.52.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
396
+ "transformer.h.52.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
397
+ "transformer.h.52.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
398
+ "transformer.h.52.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
399
+ "transformer.h.53.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
400
+ "transformer.h.53.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
401
+ "transformer.h.53.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
402
+ "transformer.h.53.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
403
+ "transformer.h.53.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
404
+ "transformer.h.53.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
405
+ "transformer.h.53.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
406
+ "transformer.h.53.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
407
+ "transformer.h.54.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
408
+ "transformer.h.54.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
409
+ "transformer.h.54.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
410
+ "transformer.h.54.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
411
+ "transformer.h.54.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
412
+ "transformer.h.54.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
413
+ "transformer.h.54.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
414
+ "transformer.h.54.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
415
+ "transformer.h.55.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
416
+ "transformer.h.55.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
417
+ "transformer.h.55.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
418
+ "transformer.h.55.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
419
+ "transformer.h.55.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
420
+ "transformer.h.55.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
421
+ "transformer.h.55.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
422
+ "transformer.h.55.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
423
+ "transformer.h.56.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
424
+ "transformer.h.56.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
425
+ "transformer.h.56.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
426
+ "transformer.h.56.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
427
+ "transformer.h.56.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
428
+ "transformer.h.56.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
429
+ "transformer.h.56.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
430
+ "transformer.h.56.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
431
+ "transformer.h.57.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
432
+ "transformer.h.57.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
433
+ "transformer.h.57.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
434
+ "transformer.h.57.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
435
+ "transformer.h.57.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
436
+ "transformer.h.57.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
437
+ "transformer.h.57.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
438
+ "transformer.h.57.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
439
+ "transformer.h.58.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
440
+ "transformer.h.58.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
441
+ "transformer.h.58.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
442
+ "transformer.h.58.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
443
+ "transformer.h.58.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
444
+ "transformer.h.58.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
445
+ "transformer.h.58.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
446
+ "transformer.h.58.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
447
+ "transformer.h.59.ln_attn.bias": "pytorch_model-00018-of-00018.bin",
448
+ "transformer.h.59.ln_attn.weight": "pytorch_model-00018-of-00018.bin",
449
+ "transformer.h.59.ln_mlp.bias": "pytorch_model-00018-of-00018.bin",
450
+ "transformer.h.59.ln_mlp.weight": "pytorch_model-00018-of-00018.bin",
451
+ "transformer.h.59.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
452
+ "transformer.h.59.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00018.bin",
453
+ "transformer.h.59.self_attention.dense.weight": "pytorch_model-00018-of-00018.bin",
454
+ "transformer.h.59.self_attention.query_key_value.weight": "pytorch_model-00018-of-00018.bin",
455
+ "transformer.h.6.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
456
+ "transformer.h.6.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
457
+ "transformer.h.6.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
458
+ "transformer.h.6.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
459
+ "transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
460
+ "transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
461
+ "transformer.h.6.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
462
+ "transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
463
+ "transformer.h.7.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
464
+ "transformer.h.7.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
465
+ "transformer.h.7.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
466
+ "transformer.h.7.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
467
+ "transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
468
+ "transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
469
+ "transformer.h.7.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
470
+ "transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
471
+ "transformer.h.8.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
472
+ "transformer.h.8.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
473
+ "transformer.h.8.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
474
+ "transformer.h.8.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
475
+ "transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
476
+ "transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
477
+ "transformer.h.8.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
478
+ "transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
479
+ "transformer.h.9.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
480
+ "transformer.h.9.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
481
+ "transformer.h.9.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
482
+ "transformer.h.9.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
483
+ "transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
484
+ "transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
485
+ "transformer.h.9.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
486
+ "transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
487
+ "transformer.ln_f.bias": "pytorch_model-00018-of-00018.bin",
488
+ "transformer.ln_f.weight": "pytorch_model-00018-of-00018.bin",
489
+ "transformer.word_embeddings.weight": "pytorch_model-00001-of-00018.bin"
490
+ }
491
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ ">>TITLE<<",
4
+ ">>ABSTRACT<<",
5
+ ">>INTRODUCTION<<",
6
+ ">>SUMMARY<<",
7
+ ">>COMMENT<<",
8
+ ">>ANSWER<<",
9
+ ">>QUESTION<<",
10
+ ">>DOMAIN<<",
11
+ ">>PREFIX<<",
12
+ ">>SUFFIX<<",
13
+ ">>MIDDLE<<"
14
+ ],
15
+ "eos_token": "<|endoftext|>"
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "clean_up_tokenization_spaces": true,
4
+ "eos_token": "<|endoftext|>",
5
+ "model_max_length": 2048,
6
+ "tokenizer_class": "PreTrainedTokenizerFast"
7
+ }