File size: 10,445 Bytes
e06b649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

from dataclasses import dataclass, field
from typing import Optional
import pandas as pd

import torch
from accelerate import Accelerator
from datasets import load_dataset, Dataset, load_metric
from peft import LoraConfig, get_peft_model
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback


# from trl import SFTTrainer, is_xpu_available
from data import AphaPenDataset
import evaluate
from sklearn.model_selection import train_test_split

import torchvision.transforms as transforms
# from utils import compute_metrics 
from src.calibrator import EncoderDecoderCalibrator
from src.loss import MarginLoss, KLRegularization
from src.similarity import CERSimilarity
import os
tqdm.pandas()

os.environ["WANDB_PROJECT"]="Alphapen"
# Define and parse arguments.
@dataclass
class ScriptArguments:
    """
    The name of the OCR model we wish to fine with Seq2SeqTrainer
    """

    model_name: Optional[str] = field(default="microsoft/trocr-base-handwritten", metadata={"help": "the model name"})
    dataset_name: Optional[str] = field(
        default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}
    )
    log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
    learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
    batch_size: Optional[int] = field(default=8, metadata={"help": "the batch size"})
    seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
    gradient_accumulation_steps: Optional[int] = field(
        default=16, metadata={"help": "the number of gradient accumulation steps"}
    )
    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
    trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
    output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
    peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
    peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
    logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
    use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
    num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
    max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
    max_length: Optional[int] = field(default=10, metadata={"help": "the maximum length"})
    no_repeat_ngram_size: Optional[int] = field(default=3, metadata={"help": "the number of repeat"})
    length_penalty: Optional[float] = field(default=2.0, metadata={"help": "the length of penalty"})
    num_beams: Optional[int] = field(default=3, metadata={"help": "the number of beam search"})
    early_stopping: Optional[bool] = field(default=True, metadata={"help": "Early stopping"})
    save_steps: Optional[int] = field(
        default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"}
    )
    save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
    push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
    gradient_checkpointing: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
    )
    gradient_checkpointing_kwargs: Optional[dict] = field(
        default=None,
        metadata={
            "help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
        },
    )
    hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})

parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]

# # Step 1: Load the dataset
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
# we reset the indices to start from zero
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
processor = TrOCRProcessor.from_pretrained(script_args.model_name)
  


train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df,  processor=processor)
eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df.iloc[:10,:],  processor=processor)

# Step 2: Load the model
# if script_args.load_in_8bit and script_args.load_in_4bit:
#     raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
# elif script_args.load_in_8bit or script_args.load_in_4bit:
#     quantization_config = BitsAndBytesConfig(
#         load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
#     )
#     # Copy the model to each device
#     device_map = (
#         {"": f"xpu:{Accelerator().local_process_index}"}
#         if is_xpu_available()
#         else {"": Accelerator().local_process_index}
#     )
#     torch_dtype = torch.bfloat16
# else:
#     device_map = None
#     quantization_config = None
#     torch_dtype = None

model = VisionEncoderDecoderModel.from_pretrained(
    script_args.model_name,
    #quantization_config=quantization_config,
    device_map="cuda",
    trust_remote_code=script_args.trust_remote_code,
    torch_dtype=torch.bfloat16,
    token=script_args.use_auth_token,
)

# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size

# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = script_args.max_length
model.config.early_stopping = script_args.early_stopping
model.config.no_repeat_ngram_size = script_args.no_repeat_ngram_size
model.config.length_penalty = script_args.length_penalty
model.config.num_beams = script_args.num_beams

# LoRa
lora_config = LoraConfig(
    r=script_args.peft_lora_r,
    lora_alpha=script_args.peft_lora_alpha,
    lora_dropout=0.1,
    target_modules=[
        'query',
        'key',
        'value',
        'intermediate.dense',
        'output.dense',
        #'wte',
        #'wpe',
        #'c_attn',
        #'c_proj',
        #'q_attn',
        #'c_fc'
    ],
)
model = get_peft_model(model, lora_config)

tokenizer = processor.tokenizer
sim = CERSimilarity(tokenizer)
loss = MarginLoss(sim, beta=0.1, num_samples=60)
reg = KLRegularization(model)
calibrator = EncoderDecoderCalibrator(model, loss, reg, 15, 15)


# # Step 3: Define the training arguments
training_args = Seq2SeqTrainingArguments(
    predict_with_generate=True,
    evaluation_strategy="steps",
    per_device_train_batch_size=script_args.batch_size,
    per_device_eval_batch_size=script_args.batch_size,
    fp16=True, 
    output_dir=script_args.output_dir,
    logging_steps=script_args.logging_steps,
    save_steps=script_args.save_steps,
    eval_steps=100,
    save_total_limit=script_args.save_total_limit,
    # load_best_model_at_end = True,
    report_to=script_args.log_with,
    num_train_epochs=script_args.num_train_epochs,
    push_to_hub=script_args.push_to_hub,
    hub_model_id=script_args.hub_model_id,
    gradient_checkpointing=script_args.gradient_checkpointing,
    # metric_for_best_model="eval/cer"
    # TODO: uncomment that on the next release 
    # gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
)


# Step 4: Define a metric

# subclass trainer
class CustomTrainer(Seq2SeqTrainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        tokenizer = processor.tokenizer
        sim = CERSimilarity(tokenizer)
        marginloss = MarginLoss(sim, beta=0.1, num_samples=60)
        labels = inputs.pop("labels")
        labels[labels == -100] = processor.tokenizer.pad_token_id
        outputs = model.generate(**inputs, num_beams=4, do_sample=True, num_return_sequences=1, return_dict_in_generate=True, output_scores=True, output_logits=True)
        # pred_str = processor.batch_decode(outputs, skip_special_tokens=True)
        print(model.config)
        print(outputs)
        print(labels.shape)
        # pred_str = processor.batch_decode(outputs, skip_special_tokens=True)
        # print(pred_str)
        loss = marginloss(outputs, labels)
        # logits = outputs.logits
        # loss = nll_loss(logits, labels)

        return (loss, outputs) if return_outputs else loss

def compute_metrics(pred):
    # accuracy_metric = evaluate.load("precision")
    cer_metric = evaluate.load("cer")

    labels_ids = pred.label_ids
    pred_ids = pred.predictions

    pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
    labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
    label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)

    cer = cer_metric.compute(predictions=pred_str, references=label_str)
    # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())

    return {"cer": cer}

early_stop = EarlyStoppingCallback(10, .001)
# # Step 5: Define the Trainer
trainer = CustomTrainer(
    model=model,
    tokenizer=processor.feature_extractor,
    args=training_args,
    # compute_metrics=compute_metrics,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    data_collator=default_data_collator,
    # callbacks = [early_stop]
)

trainer.train()

# # Step 6: Save the model
# trainer.save_model(script_args.output_dir)