hadrakey's picture
Training in progress, step 1000
e06b649 verified
import torch
from torch.utils.data import Dataset
from PIL import Image
import json
from transformers import TrOCRProcessor
import pandas as pd
from sklearn.model_selection import train_test_split
import glob
import torchvision.transforms as transforms
import numpy as np
def prepare_data_frame(root_dir):
with open(root_dir) as f:
d = json.load(f)
filename = [d[i]["word_id"]+ ".png" for i in range(len(d))]
text = [d[i]["text"] for i in range(len(d))]
data = {'filename': filename, 'text': text}
df = pd.DataFrame(data=data)
return df
class AphaPenDataset(Dataset):
def __init__(self, root_dir, df, processor, transform=None, max_target_length=128):
self.root_dir = root_dir
self.df= df
# self.filename, self.text = self.prepare_data()
self.processor = processor
self.max_target_length = max_target_length
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# get file name + text
file_name = self.df.filename[idx]
text = self.df.text[idx]
# prepare image (i.e. resize + normalize)
image = Image.open(self.root_dir + file_name).convert("RGB")
if self.transform is not None:
image = self.transform(image)
img=transforms.ToPILImage()(image)
img.save("/mnt/data1/Datasets/AlphaPen/transformed_images/" + file_name)
pixel_values = self.processor(image, return_tensors="pt").pixel_values
# add labels (input_ids) by encoding the text
labels = self.processor.tokenizer(text,
padding="max_length",
max_length=self.max_target_length).input_ids
# important: make sure that PAD tokens are ignored by the loss function
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
return encoding
def prepare_data(self):
with open(self.path_json) as f:
d = json.load(f)
filename = [d[i]["image_id"]+ ".png" for i in range(len(d))]
text = [d[i]["text"] for i in range(len(d))]
return filename, text
class AlphaPenPhi3Dataset(Dataset):
def __init__(self, root_dir, dataframe, tokenizer, max_length, image_size):
self.dataframe = dataframe
self.tokenizer = tokenizer
self.tokenizer.padding_side = 'left'
self.max_length = max_length
self.root_dir = root_dir
self.transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor()
])
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
row = self.dataframe.iloc[idx]
text = f"<|user|>\n<|image_1|>What is shown in this image?<|end|><|assistant|>\n {row['text']} <|end|>"
image_path = self.root_dir + row['filename']
# Tokenize text
encodings = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.max_length)
try:
# Load and transform image
image = Image.open(image_path).convert("RGB")
image = self.image_transform_function(image)
except (FileNotFoundError, IOError):
# Skip the sample if the image is not found
return None
labels = self.tokenizer(row['text'],
padding="max_length",
max_length=self.max_length).input_ids
# important: make sure that PAD tokens are ignored by the loss function
labels = [label if label != self.tokenizer.pad_token_id else -100 for label in labels]
encodings['pixel_values'] = image
encodings['labels'] = labels
return {key: torch.tensor(val) for key, val in encodings.items()}
def image_transform_function(self, image):
image = self.transform(image)
return image
if __name__ == "__main__":
json_path = "/mnt/data1/Datasets/OCR/Alphapen/label_check/"
json_path_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/label_check/"
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
json_files = glob.glob(json_path + "*.json")
json_files_b2 = glob.glob(json_path_b2 + "*.json")
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
df_list_b1 = [prepare_data_frame(file) for file in json_files]
df_list_b2 = [prepare_data_frame(file) for file in json_files_b2]
# df_list = df_list_b1 + df_list_b2
df_b1 = pd.concat(df_list_b1)
df_b2 = pd.concat(df_list_b2)
df_b1.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b1.csv")
df_b2.to_csv("/mnt/data1/Datasets/AlphaPen/" + "testing_data_b2.csv")
# train_df, test_df = train_test_split(df, test_size=0.15)
# # we reset the indices to start from zero
# train_df.reset_index(drop=True, inplace=True)
# test_df.reset_index(drop=True, inplace=True)
# processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
# train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor)
# eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
# print("Number of training examples:", len(train_dataset))
# print("Number of validation examples:", len(eval_dataset))
# encoding = train_dataset[0]
# for k,v in encoding.items():
# print(k, v.shape)
# image = Image.open(train_dataset.root_dir + df.filename[0]).convert("RGB")
# print('Label: '+df.text[0])
# print(image)
# labels = encoding['labels']
# print(labels)
# labels[labels == -100] = processor.tokenizer.pad_token_id
# label_str = processor.decode(labels, skip_special_tokens=True)
# print('Decoded Label:', label_str)