import torch import torch.nn as nn import torch.nn.functional as F import random class MarginLoss(nn.Module): def __init__(self, similarity_fct, beta=0.1, num_samples=20): super().__init__() self.beta = beta self.similarity_fct = similarity_fct self.num_samples = num_samples def forward(self, input_ids, target_ids, sequence_scores): B = len(input_ids) loss = 0.0 for b in range(B): C = input_ids[b].shape[0] indices = torch.arange(C) # Sample indices for positive and negative examples pos_indices = torch.multinomial(torch.ones(C) / C, self.num_samples, replacement=True) neg_indices = torch.multinomial(torch.ones(C) / C, self.num_samples, replacement=True) # Compute similarities for positive and negative examples pos_sim = self.similarity_fct(input_ids[b][pos_indices], target_ids[b].unsqueeze(0).repeat(self.num_samples, 1)) neg_sim = self.similarity_fct(input_ids[b][neg_indices], target_ids[b].unsqueeze(0).repeat(self.num_samples, 1)) # Compute loss loss_i = self.beta * (pos_sim - neg_sim) - sequence_scores[b][pos_indices] + sequence_scores[b][neg_indices] loss_j = self.beta * (neg_sim - pos_sim) - sequence_scores[b][neg_indices] + sequence_scores[b][pos_indices] loss += torch.sum(torch.relu(loss_i)) + torch.sum(torch.relu(loss_j)) return loss class KLRegularization(nn.Module): def __init__(self, model_ref): super().__init__() self.kl_loss = nn.KLDivLoss(reduction="batchmean") self.model_ref = model_ref def forward(self, inputs_ids, scores, targets_ids, **kwargs): with torch.no_grad(): scores_ref = F.softmax(self.model_ref(decoder_input_ids=inputs_ids, **kwargs).logits, dim=-1) return self.kl_loss(scores, scores_ref) class CERegularization(nn.Module): def __init__(self): super().__init__() self.nll_loss = nn.NLLLoss() def forward(self, inputs_ids, scores, targets_ids, **kwargs): return self.nll_loss(scores, targets_ids)