--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v2 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6208 - Accuracy: 0.5876 - F1: 0.5859 - Precision: 0.5892 - Recall: 0.5876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3819 | 1.0 | 173 | 1.3925 | 0.4859 | 0.4780 | 0.4752 | 0.4859 | | 1.0132 | 2.0 | 346 | 1.3560 | 0.5011 | 0.5008 | 0.5815 | 0.5011 | | 0.4879 | 3.0 | 519 | 1.4646 | 0.5510 | 0.5532 | 0.5612 | 0.5510 | | 0.1783 | 4.0 | 692 | 1.7720 | 0.5713 | 0.5705 | 0.5724 | 0.5713 | | 0.0539 | 5.0 | 865 | 1.9786 | 0.5634 | 0.5650 | 0.5701 | 0.5634 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3