--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-ep-v2 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-ep-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3256 - Accuracy: 0.6049 - F1: 0.6047 - Precision: 0.6054 - Recall: 0.6049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.299 | 1.0 | 346 | 1.3450 | 0.5025 | 0.4894 | 0.5191 | 0.5025 | | 0.9942 | 2.0 | 692 | 1.2870 | 0.5489 | 0.5550 | 0.5850 | 0.5489 | | 0.3649 | 3.0 | 1038 | 1.5221 | 0.5735 | 0.5742 | 0.5753 | 0.5735 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3