|
|
|
import torch |
|
import speechbrain as sb |
|
|
|
show_results_every = 100 |
|
run_opts = { |
|
"device": "cuda" if torch.cuda.is_available() else "cpu" |
|
} |
|
|
|
class PipelineSLUTask(sb.pretrained.interfaces.Pretrained): |
|
HPARAMS_NEEDED = [ |
|
"slu_enc", |
|
"output_emb", |
|
"dec", |
|
"seq_lin", |
|
"env_corrupt", |
|
] |
|
MODULES_NEEDED = [ |
|
"slu_enc", |
|
"output_emb", |
|
"dec", |
|
"seq_lin", |
|
"env_corrupt", |
|
] |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
pass |
|
|
|
def encode_file(self, path): |
|
|
|
tokens_bos = torch.tensor([[0]]).to(self.device) |
|
tokens = torch.tensor([], dtype=torch.int64).to(self.device) |
|
|
|
waveform = self.load_audio(path) |
|
wavs = waveform.unsqueeze(0) |
|
wav_lens = torch.tensor([1.0]) |
|
|
|
|
|
rel_length = torch.tensor([1.0]) |
|
with torch.no_grad(): |
|
rel_lens = rel_length.to(self.device) |
|
|
|
ASR_encoder_out = self.hparams.asr_model.encode_batch( |
|
wavs.detach(), wav_lens |
|
) |
|
|
|
|
|
encoder_out = self.hparams.slu_enc(ASR_encoder_out) |
|
e_in = self.hparams.output_emb(tokens_bos) |
|
|
|
|
|
|
|
h, _ = self.hparams.dec(e_in, encoder_out, wav_lens) |
|
|
|
|
|
logits = self.hparams.seq_lin(h) |
|
p_seq = self.hparams.log_softmax(logits) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p_tokens, scores = self.hparams.beam_searcher(encoder_out, wav_lens) |
|
return p_seq, wav_lens, p_tokens |
|
|
|
|
|
|
|
def decode(self, p_seq, wav_lens, predicted_tokens): |
|
tokens_eos = torch.tensor([[0]]).to(self.device) |
|
tokens_eos_lens = torch.tensor([0]).to(self.device) |
|
|
|
|
|
predicted_semantics = [ |
|
tokenizer.decode_ids(utt_seq).split(" ") |
|
for utt_seq in predicted_tokens |
|
] |
|
return predicted_semantics |
|
|
|
|
|
from typing import Dict, List, Any |
|
from pretrained import PipelineSLUTask |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
hparams_file = f"{path}/better_tokenizer/1986/direct-train.yaml" |
|
overrides = {} |
|
with open(hparams_file) as fin: |
|
hparams = load_hyperpyyaml(fin, overrides) |
|
|
|
run_opts = { |
|
"device": "cuda" if torch.cuda.is_available() else "cpu" |
|
} |
|
|
|
self.pipeline = PipelineSLUTask( |
|
modules=hparams['modules'], |
|
hparams=hparams, |
|
run_opts=run_opts |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
|
|
data = data.get("inputs", data) |
|
print(data) |
|
ps, wl, pt = self.pipeline.encode_file(data) |
|
return self.pipeline.decode(ps, wl, pt) |
|
|