Create handler.py
Browse files- handler.py +116 -0
handler.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import speechbrain as sb
|
3 |
+
|
4 |
+
show_results_every = 100 # plots results every N iterations
|
5 |
+
run_opts = {
|
6 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
}
|
8 |
+
|
9 |
+
class PipelineSLUTask(sb.pretrained.interfaces.Pretrained):
|
10 |
+
HPARAMS_NEEDED = [
|
11 |
+
"slu_enc",
|
12 |
+
"output_emb",
|
13 |
+
"dec",
|
14 |
+
"seq_lin",
|
15 |
+
"env_corrupt",
|
16 |
+
]
|
17 |
+
MODULES_NEEDED = [
|
18 |
+
"slu_enc",
|
19 |
+
"output_emb",
|
20 |
+
"dec",
|
21 |
+
"seq_lin",
|
22 |
+
"env_corrupt",
|
23 |
+
]
|
24 |
+
|
25 |
+
def __init__(self, *args, **kwargs):
|
26 |
+
super().__init__(*args, **kwargs)
|
27 |
+
pass
|
28 |
+
|
29 |
+
def encode_file(self, path):
|
30 |
+
|
31 |
+
tokens_bos = torch.tensor([[0]]).to(self.device)
|
32 |
+
tokens = torch.tensor([], dtype=torch.int64).to(self.device)
|
33 |
+
|
34 |
+
waveform = self.load_audio(path)
|
35 |
+
wavs = waveform.unsqueeze(0)
|
36 |
+
wav_lens = torch.tensor([1.0])
|
37 |
+
# Fake a batch:
|
38 |
+
# batch = waveform.unsqueeze(0)
|
39 |
+
rel_length = torch.tensor([1.0])
|
40 |
+
with torch.no_grad():
|
41 |
+
rel_lens = rel_length.to(self.device)
|
42 |
+
# ASR encoder forward pass
|
43 |
+
ASR_encoder_out = self.hparams.asr_model.encode_batch(
|
44 |
+
wavs.detach(), wav_lens
|
45 |
+
)
|
46 |
+
|
47 |
+
# SLU forward pass
|
48 |
+
encoder_out = self.hparams.slu_enc(ASR_encoder_out)
|
49 |
+
e_in = self.hparams.output_emb(tokens_bos)
|
50 |
+
# print(e_in.shape)
|
51 |
+
# print(encoder_out.shape)
|
52 |
+
# print(wav_lens.shape)
|
53 |
+
h, _ = self.hparams.dec(e_in, encoder_out, wav_lens)
|
54 |
+
|
55 |
+
# Output layer for seq2seq log-probabilities
|
56 |
+
logits = self.hparams.seq_lin(h)
|
57 |
+
p_seq = self.hparams.log_softmax(logits)
|
58 |
+
|
59 |
+
# Compute outputs
|
60 |
+
# if (
|
61 |
+
# stage == sb.Stage.TRAIN
|
62 |
+
# and self.batch_count % show_results_every != 0
|
63 |
+
# ):
|
64 |
+
# return p_seq, wav_lens
|
65 |
+
# else:
|
66 |
+
p_tokens, scores = self.hparams.beam_searcher(encoder_out, wav_lens)
|
67 |
+
return p_seq, wav_lens, p_tokens
|
68 |
+
|
69 |
+
# return ASR_encoder_out
|
70 |
+
|
71 |
+
def decode(self, p_seq, wav_lens, predicted_tokens):
|
72 |
+
tokens_eos = torch.tensor([[0]]).to(self.device)
|
73 |
+
tokens_eos_lens = torch.tensor([0]).to(self.device)
|
74 |
+
|
75 |
+
# Decode token terms to words
|
76 |
+
predicted_semantics = [
|
77 |
+
tokenizer.decode_ids(utt_seq).split(" ")
|
78 |
+
for utt_seq in predicted_tokens
|
79 |
+
]
|
80 |
+
return predicted_semantics
|
81 |
+
|
82 |
+
|
83 |
+
from typing import Dict, List, Any
|
84 |
+
from pretrained import PipelineSLUTask
|
85 |
+
|
86 |
+
class EndpointHandler():
|
87 |
+
def __init__(self, path=""):
|
88 |
+
hparams_file = f"{path}/direct-train.yaml"
|
89 |
+
overrides = {}
|
90 |
+
with open(hparams_file) as fin:
|
91 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
92 |
+
|
93 |
+
run_opts = {
|
94 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
95 |
+
}
|
96 |
+
|
97 |
+
self.pipeline = PipelineSLUTask(
|
98 |
+
modules=hparams['modules'],
|
99 |
+
hparams=hparams,
|
100 |
+
run_opts=run_opts
|
101 |
+
)
|
102 |
+
|
103 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
104 |
+
"""
|
105 |
+
data args:
|
106 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
107 |
+
kwargs
|
108 |
+
Return:
|
109 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
110 |
+
"""
|
111 |
+
# pseudo
|
112 |
+
# self.model(input)
|
113 |
+
data = data.get("inputs", data)
|
114 |
+
print(data)
|
115 |
+
ps, wl, pt = self.pipeline.encode_file(data)
|
116 |
+
return self.pipeline.decode(ps, wl, pt)
|