File size: 1,835 Bytes
fca1a82
 
 
 
 
 
 
 
2e6b544
 
fca1a82
2e6b544
fca1a82
 
 
 
 
 
 
 
 
8511f3d
 
 
 
 
fca1a82
 
 
8511f3d
fca1a82
 
 
 
 
 
 
 
 
8511f3d
fca1a82
 
 
 
 
 
 
 
 
 
 
 
 
2e6b544
fca1a82
 
2e6b544
 
 
41a946e
2e6b544
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
language: 
- ja
thumbnail: 
tags:
- xlnet
- lm-head
- causal-lm
license:
- apache-2.0
datasets:
- Japanese_Business_News
metrics:
---

# XLNet-japanese

## Model description
This model require Mecab and senetencepiece with XLNetTokenizer.
See details https://qiita.com/mkt3/items/4d0ae36f3f212aee8002

This model uses NFKD as the normalization method for character encoding.
Japanese muddle marks and semi-muddle marks will be lost.

*日本語の濁点・半濁点がないモデルです*

#### How to use

```python
from fugashi import Tagger 

from transformers import (
    pipeline,
    XLNetLMHeadModel,
    XLNetTokenizer
)

class XLNet():
    def __init__(self):
        self.m = Tagger('-Owakati') 
        self.gen_model = XLNetLMHeadModel.from_pretrained("hajime9652/xlnet-japanese")
        self.gen_tokenizer = XLNetTokenizer.from_pretrained("hajime9652/xlnet-japanese")
         
    def generate(self, prompt="福岡のご飯は美味しい。コンパクトで暮らしやすい街。"):
        prompt = self.m.parse(prompt)
        inputs = self.gen_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
        prompt_length = len(self.gen_tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
        outputs = self.gen_model.generate(inputs, max_length=200, do_sample=True, top_p=0.95, top_k=60)
        generated = prompt + self.gen_tokenizer.decode(outputs[0])[prompt_length:]
        return generated
```

#### Limitations and bias
This model's training use the Japanese Business News.


# Important matter
The company that created and published this model is called Stockmark.
This repository is for use by HuggingFace and not for infringement.
See this documents https://qiita.com/mkt3/items/4d0ae36f3f212aee8002
published by https://github.com/mkt3