hamedkhaledi
commited on
Commit
•
0ac09fe
1
Parent(s):
53772cd
add Model
Browse files- loss.tsv +3 -0
- pytorch_model.bin +3 -0
- training.log +96 -0
loss.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
6 07:10:41 0 0.1000 0.07391205054453862 0.05534437298774719 0.8262 0.7999 0.8129 0.6949
|
3 |
+
7 07:59:57 0 0.1000 0.07154660764968938 0.05505584925413132 0.8469 0.7901 0.8175 0.7019
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15da00307b7fec8958dafca847190ec19c2eaf49cfb1a3ac53d503c483e69152
|
3 |
+
size 413753973
|
training.log
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-03-25 06:21:37,092 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-03-25 06:21:37,098 Model: "SequenceTagger(
|
3 |
+
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): WordEmbeddings(
|
5 |
+
'fa'
|
6 |
+
(embedding): Embedding(56850, 300)
|
7 |
+
)
|
8 |
+
(list_embedding_1): FlairEmbeddings(
|
9 |
+
(lm): LanguageModel(
|
10 |
+
(drop): Dropout(p=0.1, inplace=False)
|
11 |
+
(encoder): Embedding(5105, 100)
|
12 |
+
(rnn): LSTM(100, 2048)
|
13 |
+
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
|
14 |
+
)
|
15 |
+
)
|
16 |
+
(list_embedding_2): FlairEmbeddings(
|
17 |
+
(lm): LanguageModel(
|
18 |
+
(drop): Dropout(p=0.1, inplace=False)
|
19 |
+
(encoder): Embedding(5105, 100)
|
20 |
+
(rnn): LSTM(100, 2048)
|
21 |
+
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
|
22 |
+
)
|
23 |
+
)
|
24 |
+
)
|
25 |
+
(word_dropout): WordDropout(p=0.05)
|
26 |
+
(locked_dropout): LockedDropout(p=0.5)
|
27 |
+
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
|
28 |
+
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
|
29 |
+
(linear): Linear(in_features=512, out_features=18, bias=True)
|
30 |
+
(beta): 1.0
|
31 |
+
(weights): None
|
32 |
+
(weight_tensor) None
|
33 |
+
)"
|
34 |
+
2022-03-25 06:21:37,103 ----------------------------------------------------------------------------------------------------
|
35 |
+
2022-03-25 06:21:37,108 Corpus: "Corpus: 23060 train + 4070 dev + 4150 test sentences"
|
36 |
+
2022-03-25 06:21:37,111 ----------------------------------------------------------------------------------------------------
|
37 |
+
2022-03-25 06:21:37,115 Parameters:
|
38 |
+
2022-03-25 06:21:37,117 - learning_rate: "0.1"
|
39 |
+
2022-03-25 06:21:37,119 - mini_batch_size: "4"
|
40 |
+
2022-03-25 06:21:37,122 - patience: "3"
|
41 |
+
2022-03-25 06:21:37,125 - anneal_factor: "0.5"
|
42 |
+
2022-03-25 06:21:37,127 - max_epochs: "10"
|
43 |
+
2022-03-25 06:21:37,129 - shuffle: "True"
|
44 |
+
2022-03-25 06:21:37,132 - train_with_dev: "False"
|
45 |
+
2022-03-25 06:21:37,135 - batch_growth_annealing: "False"
|
46 |
+
2022-03-25 06:21:37,137 ----------------------------------------------------------------------------------------------------
|
47 |
+
2022-03-25 06:21:37,140 Model training base path: "/content/gdrive/MyDrive/project/data/ner/model"
|
48 |
+
2022-03-25 06:21:37,142 ----------------------------------------------------------------------------------------------------
|
49 |
+
2022-03-25 06:21:37,145 Device: cuda:0
|
50 |
+
2022-03-25 06:21:37,148 ----------------------------------------------------------------------------------------------------
|
51 |
+
2022-03-25 06:21:37,150 Embeddings storage mode: none
|
52 |
+
2022-03-25 06:21:37,398 ----------------------------------------------------------------------------------------------------
|
53 |
+
2022-03-25 06:25:43,993 epoch 6 - iter 576/5765 - loss 0.07042695 - samples/sec: 9.35 - lr: 0.100000
|
54 |
+
2022-03-25 06:29:47,830 epoch 6 - iter 1152/5765 - loss 0.07287426 - samples/sec: 9.49 - lr: 0.100000
|
55 |
+
2022-03-25 06:34:02,575 epoch 6 - iter 1728/5765 - loss 0.07379352 - samples/sec: 9.08 - lr: 0.100000
|
56 |
+
2022-03-25 06:38:22,556 epoch 6 - iter 2304/5765 - loss 0.07346159 - samples/sec: 8.90 - lr: 0.100000
|
57 |
+
2022-03-25 06:42:37,312 epoch 6 - iter 2880/5765 - loss 0.07318457 - samples/sec: 9.08 - lr: 0.100000
|
58 |
+
2022-03-25 06:47:03,459 epoch 6 - iter 3456/5765 - loss 0.07343553 - samples/sec: 8.69 - lr: 0.100000
|
59 |
+
2022-03-25 06:51:22,020 epoch 6 - iter 4032/5765 - loss 0.07360594 - samples/sec: 8.95 - lr: 0.100000
|
60 |
+
2022-03-25 06:55:36,718 epoch 6 - iter 4608/5765 - loss 0.07332146 - samples/sec: 9.08 - lr: 0.100000
|
61 |
+
2022-03-25 07:00:02,036 epoch 6 - iter 5184/5765 - loss 0.07376939 - samples/sec: 8.72 - lr: 0.100000
|
62 |
+
2022-03-25 07:04:32,247 epoch 6 - iter 5760/5765 - loss 0.07393306 - samples/sec: 8.56 - lr: 0.100000
|
63 |
+
2022-03-25 07:04:35,408 ----------------------------------------------------------------------------------------------------
|
64 |
+
2022-03-25 07:04:35,411 EPOCH 6 done: loss 0.0739 - lr 0.1000000
|
65 |
+
2022-03-25 07:10:41,676 DEV : loss 0.05534437298774719 - f1-score (micro avg) 0.8129
|
66 |
+
2022-03-25 07:10:41,758 BAD EPOCHS (no improvement): 0
|
67 |
+
2022-03-25 07:10:43,386 saving best model
|
68 |
+
2022-03-25 07:10:45,085 ----------------------------------------------------------------------------------------------------
|
69 |
+
2022-03-25 07:15:08,362 epoch 7 - iter 576/5765 - loss 0.06846625 - samples/sec: 8.75 - lr: 0.100000
|
70 |
+
2022-03-25 07:19:20,901 epoch 7 - iter 1152/5765 - loss 0.07066517 - samples/sec: 9.16 - lr: 0.100000
|
71 |
+
2022-03-25 07:23:45,054 epoch 7 - iter 1728/5765 - loss 0.07063719 - samples/sec: 8.76 - lr: 0.100000
|
72 |
+
2022-03-25 07:27:58,256 epoch 7 - iter 2304/5765 - loss 0.07101257 - samples/sec: 9.14 - lr: 0.100000
|
73 |
+
2022-03-25 07:32:05,224 epoch 7 - iter 2880/5765 - loss 0.07072532 - samples/sec: 9.37 - lr: 0.100000
|
74 |
+
2022-03-25 07:36:19,489 epoch 7 - iter 3456/5765 - loss 0.07040446 - samples/sec: 9.10 - lr: 0.100000
|
75 |
+
2022-03-25 07:40:49,459 epoch 7 - iter 4032/5765 - loss 0.07117669 - samples/sec: 8.57 - lr: 0.100000
|
76 |
+
2022-03-25 07:45:06,879 epoch 7 - iter 4608/5765 - loss 0.07147140 - samples/sec: 8.99 - lr: 0.100000
|
77 |
+
2022-03-25 07:49:20,561 epoch 7 - iter 5184/5765 - loss 0.07151126 - samples/sec: 9.12 - lr: 0.100000
|
78 |
+
2022-03-25 07:53:46,941 epoch 7 - iter 5760/5765 - loss 0.07156780 - samples/sec: 8.69 - lr: 0.100000
|
79 |
+
2022-03-25 07:53:49,751 ----------------------------------------------------------------------------------------------------
|
80 |
+
2022-03-25 07:53:49,759 EPOCH 7 done: loss 0.0715 - lr 0.1000000
|
81 |
+
2022-03-25 07:59:57,729 DEV : loss 0.05505584925413132 - f1-score (micro avg) 0.8175
|
82 |
+
2022-03-25 07:59:57,813 BAD EPOCHS (no improvement): 0
|
83 |
+
2022-03-25 07:59:59,910 saving best model
|
84 |
+
2022-03-25 08:00:01,383 ----------------------------------------------------------------------------------------------------
|
85 |
+
2022-03-25 08:04:20,017 epoch 8 - iter 576/5765 - loss 0.06595992 - samples/sec: 8.91 - lr: 0.100000
|
86 |
+
2022-03-25 08:08:34,362 epoch 8 - iter 1152/5765 - loss 0.06695618 - samples/sec: 9.10 - lr: 0.100000
|
87 |
+
2022-03-25 08:13:01,311 epoch 8 - iter 1728/5765 - loss 0.06868385 - samples/sec: 8.66 - lr: 0.100000
|
88 |
+
2022-03-25 08:17:19,699 epoch 8 - iter 2304/5765 - loss 0.06855573 - samples/sec: 8.95 - lr: 0.100000
|
89 |
+
2022-03-25 08:21:39,417 epoch 8 - iter 2880/5765 - loss 0.06828534 - samples/sec: 8.91 - lr: 0.100000
|
90 |
+
2022-03-25 08:25:58,656 epoch 8 - iter 3456/5765 - loss 0.06920992 - samples/sec: 8.92 - lr: 0.100000
|
91 |
+
2022-03-25 08:30:19,059 epoch 8 - iter 4032/5765 - loss 0.06966214 - samples/sec: 8.88 - lr: 0.100000
|
92 |
+
2022-03-25 08:34:32,114 epoch 8 - iter 4608/5765 - loss 0.06999527 - samples/sec: 9.14 - lr: 0.100000
|
93 |
+
2022-03-25 08:38:45,063 epoch 8 - iter 5184/5765 - loss 0.07041313 - samples/sec: 9.15 - lr: 0.100000
|
94 |
+
2022-03-25 08:42:53,891 epoch 8 - iter 5760/5765 - loss 0.07067043 - samples/sec: 9.30 - lr: 0.100000
|
95 |
+
2022-03-25 08:42:56,995 ----------------------------------------------------------------------------------------------------
|
96 |
+
2022-03-25 08:42:56,998 EPOCH 8 done: loss 0.0707 - lr 0.1000000
|