hamishivi commited on
Commit
7f33f1a
1 Parent(s): 2867d20

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: tulu-v2.5-7b-uf-mean-7b-uf-rm-value
4
+ results: []
5
+ datasets:
6
+ - allenai/tulu-2.5-preference-data
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: allenai/tulu-v2.5-13b-uf-rm
11
+ license: apache-2.0
12
+ ---
13
+ <center>
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
15
+ </center>
16
+
17
+ # Model Card for Tulu V2.5 7B RM - UltraFeedback Value Model
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
21
+ This is a **value** model produced during the PPO training of [this](https://huggingface.co/hamishivi/tulu-v2.5-ppo-7b-uf-mean) model.
22
+ It was initialised from the [Tulu v2.573B UltraFeedback RM](https://huggingface.co/hamishivi/tulu-v2.5-7b-uf-rm).
23
+ We release the value model as it may provide a good starting point for additional research or improved decoding with our released PPO models.
24
+
25
+ At time of writing, you may have to [install transformers from source](https://huggingface.co/docs/transformers/en/installation#install-from-source) to get the `LlamaForTokenClassification` class.
26
+
27
+ For more details, read the paper:
28
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
29
+
30
+
31
+ ## .Model description
32
+
33
+ - **Model type:** One model belonging to a suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
34
+ - **Language(s) (NLP):** English
35
+ - **License:** Apache 2.0.
36
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
37
+
38
+ ### Model Sources
39
+
40
+ - **Repository:** https://github.com/allenai/open-instruct
41
+ - **Dataset:** Prompts used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split.
42
+ - **Model Family:** The collection of related models can be found [here](https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).
43
+
44
+ ## Input Format
45
+
46
+ The model is trained to use the following format (note the newlines):
47
+ ```
48
+ <|user|>
49
+ Your message here!
50
+ <|assistant|>
51
+ ```
52
+
53
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
54
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
55
+
56
+ ## Intended uses & limitations
57
+
58
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
59
+ We then further trained the model with a [Jax PPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_ppo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.
60
+ This model is meant as a research artefact.
61
+
62
+ ### Training hyperparameters
63
+
64
+ The following hyperparameters were used during overall PPO training:
65
+ - learning_rate: 1e-06
66
+ - total_train_batch_size: 64
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - lr_scheduler_warmup_ratio: 0.1
70
+ - num_epochs: 1.0
71
+ - KL penalty coefficient: 0.05
72
+
73
+ ## Citation
74
+
75
+ If you find Tulu 2.5 is useful in your work, please cite it with:
76
+
77
+ ```
78
+ @misc{ivison2024unpacking,
79
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
80
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
81
+ year={2024},
82
+ eprint={2406.09279},
83
+ archivePrefix={arXiv},
84
+ primaryClass={cs.CL}
85
+ }
86
+ ```