--- ### TEST LORA license: apache-2.0 datasets: - mrm8488/CHISTES_spanish_jokes language: - es pipeline_tag: text-generation --- ## TEST LORA # Adapter for BERTIN-GPT-J-6B fine-tuned on Jokes for jokes generation ## Adapter Description This adapter was created by using the [PEFT](https://github.com/huggingface/peft) library and allows the base model **BERTIN-GPT-J-6B** to be fine-tuned on the dataset **mrm8488/CHISTES_spanish_jokes** for **Spanish jokes generation** by using the method **LoRA**. ## Model Description [BERTIN-GPT-J-6B](https://huggingface.co/bertin-project/bertin-gpt-j-6B) is a Spanish finetuned version of GPT-J 6B, a transformer model trained using Ben Wang's Mesh Transformer JAX. "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. ## Training data Dataset from [Workshop for NLP introduction with Spanish jokes](https://github.com/liopic/chistes-nlp) [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Training procedure TBA ## How to use ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "mrm8488/bertin-gpt-j-6B-es-finetuned-chistes_spanish_jokes-500" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # Inference batch = tokenizer("Esto son dos amigos", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))