--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: TransparentBagClassifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8597560975609756 --- # TransparentBagClassifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3956 - Accuracy: 0.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.448 | 1.0 | 82 | 0.7304 | 0.5725 | | 0.5097 | 2.0 | 164 | 0.7652 | 0.4946 | | 0.452 | 3.0 | 246 | 0.7565 | 0.4841 | | 0.3885 | 4.0 | 328 | 0.7565 | 0.4812 | | 0.4743 | 5.0 | 410 | 0.7739 | 0.4626 | | 0.4749 | 4.0 | 464 | 0.4572 | 0.7988 | | 0.4319 | 5.0 | 580 | 0.3956 | 0.8598 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cpu - Datasets 3.0.0 - Tokenizers 0.19.1