File size: 2,923 Bytes
fd3f911
 
 
 
 
 
d4c9b61
fd3f911
 
 
 
 
 
 
 
 
d4c9b61
 
fd3f911
 
 
 
 
 
d4c9b61
fd3f911
 
 
 
 
 
 
d4c9b61
fd3f911
d4c9b61
 
fd3f911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c9b61
fd3f911
 
 
 
 
d4c9b61
 
fd3f911
 
 
 
 
d4c9b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3f911
 
 
 
d4c9b61
fd3f911
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5875
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# image_classification

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2378
- Accuracy: 0.5875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 40   | 2.0656          | 0.125    |
| No log        | 2.0   | 80   | 2.0558          | 0.1938   |
| No log        | 3.0   | 120  | 2.0177          | 0.2375   |
| No log        | 4.0   | 160  | 1.9156          | 0.3438   |
| No log        | 5.0   | 200  | 1.7849          | 0.3063   |
| No log        | 6.0   | 240  | 1.6961          | 0.3187   |
| No log        | 7.0   | 280  | 1.6026          | 0.3937   |
| No log        | 8.0   | 320  | 1.5455          | 0.3688   |
| No log        | 9.0   | 360  | 1.4723          | 0.4562   |
| No log        | 10.0  | 400  | 1.3931          | 0.5      |
| No log        | 11.0  | 440  | 1.4418          | 0.4375   |
| No log        | 12.0  | 480  | 1.3306          | 0.4437   |
| 1.5855        | 13.0  | 520  | 1.2437          | 0.575    |
| 1.5855        | 14.0  | 560  | 1.3712          | 0.4875   |
| 1.5855        | 15.0  | 600  | 1.2102          | 0.55     |
| 1.5855        | 16.0  | 640  | 1.3217          | 0.5188   |
| 1.5855        | 17.0  | 680  | 1.3656          | 0.4938   |
| 1.5855        | 18.0  | 720  | 1.3261          | 0.525    |
| 1.5855        | 19.0  | 760  | 1.5611          | 0.4625   |
| 1.5855        | 20.0  | 800  | 1.4503          | 0.5125   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3