Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
```
|
6 |
@misc{xu2024contrastive,
|
7 |
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
|
@@ -12,15 +26,13 @@ license: mit
|
|
12 |
primaryClass={cs.CL}
|
13 |
}
|
14 |
```
|
15 |
-
# Download ALMA(-R) Models and Dataset 🚀
|
16 |
-
|
17 |
We release six translation models presented in the paper:
|
18 |
-
- ALMA-7B
|
19 |
-
- ALMA-7B-LoRA
|
20 |
- **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
|
21 |
-
- ALMA-13B
|
22 |
-
- ALMA-13B-LoRA
|
23 |
-
- **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization
|
24 |
|
25 |
Model checkpoints are released at huggingface:
|
26 |
| Models | Base Model Link | LoRA Link |
|
@@ -40,18 +52,19 @@ Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
|
|
40 |
| Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) |
|
41 |
| Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) |
|
42 |
|
43 |
-
|
44 |
-
A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English:
|
45 |
```
|
46 |
import torch
|
|
|
47 |
from transformers import AutoModelForCausalLM
|
48 |
-
from transformers import
|
49 |
|
50 |
# Load base model and LoRA weights
|
51 |
-
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-
|
52 |
-
|
|
|
53 |
|
54 |
-
# Add the source
|
55 |
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
|
56 |
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
|
57 |
|
@@ -60,4 +73,6 @@ with torch.no_grad():
|
|
60 |
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
|
61 |
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
62 |
print(outputs)
|
63 |
-
```
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
5 |
+
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
|
6 |
+
```
|
7 |
+
@misc{xu2023paradigm,
|
8 |
+
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
|
9 |
+
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
|
10 |
+
year={2023},
|
11 |
+
eprint={2309.11674},
|
12 |
+
archivePrefix={arXiv},
|
13 |
+
primaryClass={cs.CL}
|
14 |
+
}
|
15 |
+
```
|
16 |
+
**[ALMA-R](https://arxiv.org/abs/2401.08417) (NEW!) is released now!** ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
|
17 |
+
|
18 |
+
|
19 |
```
|
20 |
@misc{xu2024contrastive,
|
21 |
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
|
|
|
26 |
primaryClass={cs.CL}
|
27 |
}
|
28 |
```
|
|
|
|
|
29 |
We release six translation models presented in the paper:
|
30 |
+
- **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
|
31 |
+
- **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
|
32 |
- **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
|
33 |
+
- **ALMA-13B**: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
|
34 |
+
- **ALMA-13B-LoRA** (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
|
35 |
+
- **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization.
|
36 |
|
37 |
Model checkpoints are released at huggingface:
|
38 |
| Models | Base Model Link | LoRA Link |
|
|
|
52 |
| Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) |
|
53 |
| Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) |
|
54 |
|
55 |
+
A quick start to use system ALMA-13B-LoRA for translation. An example of translating "我爱机器翻译。" into English:
|
|
|
56 |
```
|
57 |
import torch
|
58 |
+
from peft import PeftModel
|
59 |
from transformers import AutoModelForCausalLM
|
60 |
+
from transformers import LlamaTokenizer
|
61 |
|
62 |
# Load base model and LoRA weights
|
63 |
+
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
|
64 |
+
model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA")
|
65 |
+
tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')
|
66 |
|
67 |
+
# Add the source setence into the prompt template
|
68 |
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
|
69 |
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
|
70 |
|
|
|
73 |
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
|
74 |
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
75 |
print(outputs)
|
76 |
+
```
|
77 |
+
|
78 |
+
Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)
|