MetaQA / model.py
haritzpuerto's picture
Create model.py
dd38fc4
from torch import nn
import torch
import numpy as np
from transformers import BertPreTrainedModel
from transformers.modeling_outputs import TokenClassifierOutput, BaseModelOutputWithPoolingAndCrossAttentions
from transformers.models.bert.modeling_bert import BertPooler, BertEncoder
class MetaQA_Model(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = MetaQABertModel(config)
self.num_agents = config.num_agents
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.list_MoSeN = nn.ModuleList([nn.Linear(config.hidden_size, 1) for i in range(self.num_agents)])
self.input_size_ans_sel = 1 + config.hidden_size
interm_size = int(config.hidden_size/2)
self.ans_sel = nn.Sequential(nn.Linear(self.input_size_ans_sel, interm_size),
nn.ReLU(),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(interm_size, 2))
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
ans_sc=None,
agent_sc=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
ans_sc=ans_sc,
agent_sc=agent_sc,
)
# domain classification
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
list_domains_logits = []
for MoSeN in self.list_MoSeN:
domain_logits = MoSeN(pooled_output)
list_domains_logits.append(domain_logits)
domain_logits = torch.stack(list_domains_logits)
# shape = (num_agents, batch_size, 1)
# we have to transpose the shape to (batch_size, num_agents, 1)
domain_logits = domain_logits.transpose(0,1)
# ans classifier
sequence_output = outputs[0] # (batch_size, seq_len, hidden_size)
# select the [RANK] token embeddings
idx_rank = (input_ids == 1).nonzero() # (batch_size x num_agents, 2)
idx_rank = idx_rank[:,1].view(-1, self.num_agents)
list_emb = []
for i in range(idx_rank.shape[0]):
rank_emb = sequence_output[i][idx_rank[i], :]
# rank shape = (1, hidden_size)
list_emb.append(rank_emb)
rank_emb = torch.stack(list_emb)
rank_emb = self.dropout(rank_emb)
rank_emb = torch.cat((rank_emb, domain_logits), dim=2)
# rank emb shape = (batch_size, num_agents, hidden_size+1)
logits = self.ans_sel(rank_emb) # (batch_size, num_agents, 2)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return TokenClassifierOutput(
loss=None,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class MetaQABertModel(BertPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = MetaQABertEmbeddings(config) # NEW
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
ans_sc=None,
agent_sc=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
ans_sc=ans_sc,
agent_sc=agent_sc,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class MetaQABertEmbeddings(nn.Module):
"""Construct the embeddings from
word, position, token_type embeddings, and scores from the QA agents."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.ans_sc_proj = nn.Linear(1, config.hidden_size)
self.agent_sc_proj = nn.Linear(1, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0,
ans_sc=None, agent_sc=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
if ans_sc is not None:
ans_sc_emb = self.ans_sc_proj(ans_sc.unsqueeze(2))
embeddings += ans_sc_emb
if agent_sc is not None:
agent_sc_emb = self.agent_sc_proj(agent_sc.unsqueeze(2))
embeddings += agent_sc_emb
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings