Upload 2 files
Browse filesRAG with TinyLLaMA
- .gitattributes +1 -0
- RAG_inference.py +144 -0
- hinglish_dataset_opt.csv +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
hinglish_dataset_opt.csv filter=lfs diff=lfs merge=lfs -text
|
RAG_inference.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
8 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
9 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
+
|
11 |
+
document = SimpleDirectoryReader("sft/dataset").load_data()
|
12 |
+
|
13 |
+
from llama_index.core import PromptTemplate
|
14 |
+
|
15 |
+
system_prompt = "You are a QA bot. Given the questions answer it correctly."
|
16 |
+
|
17 |
+
query_wrapper_prompt = PromptTemplate("<|user|>:{query_str}\n<|assistant|>:")
|
18 |
+
|
19 |
+
llm = HuggingFaceLLM(
|
20 |
+
context_window=2048,
|
21 |
+
max_new_tokens=256,
|
22 |
+
generate_kwargs={"temperature":0.0, "do_sample":False},
|
23 |
+
system_prompt=system_prompt,
|
24 |
+
query_wrapper_prompt=query_wrapper_prompt,
|
25 |
+
tokenizer_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
26 |
+
model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
27 |
+
device_map="cuda",
|
28 |
+
model_kwargs={"torch_dtype":torch.bfloat16},
|
29 |
+
)
|
30 |
+
|
31 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
32 |
+
|
33 |
+
service_context = ServiceContext.from_defaults(
|
34 |
+
chunk_size=256,
|
35 |
+
llm=llm,
|
36 |
+
embed_model=embed_model
|
37 |
+
)
|
38 |
+
|
39 |
+
index = VectorStoreIndex.from_documents(document, service_context = service_context)
|
40 |
+
|
41 |
+
query_engine = index.as_query_engine()
|
42 |
+
|
43 |
+
|
44 |
+
# Defining a custom stopping criteria class for the model's text generation.
|
45 |
+
class StopOnTokens(StoppingCriteria):
|
46 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
47 |
+
stop_ids = [2] # IDs of tokens where the generation should stop.
|
48 |
+
for stop_id in stop_ids:
|
49 |
+
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
|
50 |
+
return True
|
51 |
+
return False
|
52 |
+
|
53 |
+
# Function to generate model predictions.
|
54 |
+
def predict(message, history):
|
55 |
+
history_transformer_format = history + [[message, ""]]
|
56 |
+
stop = StopOnTokens()
|
57 |
+
|
58 |
+
# Formatting the input for the model.
|
59 |
+
messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
60 |
+
for item in history_transformer_format])
|
61 |
+
|
62 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
63 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
64 |
+
generate_kwargs = dict(
|
65 |
+
model_inputs,
|
66 |
+
streamer=streamer,
|
67 |
+
max_new_tokens=1024,
|
68 |
+
do_sample=True,
|
69 |
+
top_p=0.95,
|
70 |
+
top_k=50,
|
71 |
+
temperature=0.5,
|
72 |
+
num_beams=1,
|
73 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
74 |
+
)
|
75 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
76 |
+
t.start() # Starting the generation in a separate thread.
|
77 |
+
partial_message = ""
|
78 |
+
for new_token in streamer:
|
79 |
+
partial_message += new_token
|
80 |
+
if '</s>' in partial_message: # Breaking the loop if the stop token is generated.
|
81 |
+
break
|
82 |
+
yield partial_message
|
83 |
+
|
84 |
+
|
85 |
+
def predict(input, history):
|
86 |
+
response = query_engine.query(input)
|
87 |
+
return str(response)
|
88 |
+
|
89 |
+
gr.ChatInterface(predict).launch(share=True)
|
90 |
+
# # Loading the tokenizer and model from Hugging Face's model hub.
|
91 |
+
# tokenizer = AutoTokenizer.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575")
|
92 |
+
# model = AutoModelForCausalLM.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575")
|
93 |
+
|
94 |
+
# # using CUDA for an optimal experience
|
95 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
96 |
+
# model = model.to(device)
|
97 |
+
|
98 |
+
# # Defining a custom stopping criteria class for the model's text generation.
|
99 |
+
# class StopOnTokens(StoppingCriteria):
|
100 |
+
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
101 |
+
# stop_ids = [2] # IDs of tokens where the generation should stop.
|
102 |
+
# for stop_id in stop_ids:
|
103 |
+
# if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
|
104 |
+
# return True
|
105 |
+
# return False
|
106 |
+
|
107 |
+
# # Function to generate model predictions.
|
108 |
+
# def predict(message, history):
|
109 |
+
# history_transformer_format = history + [[message, ""]]
|
110 |
+
# stop = StopOnTokens()
|
111 |
+
|
112 |
+
# # Formatting the input for the model.
|
113 |
+
# messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
114 |
+
# for item in history_transformer_format])
|
115 |
+
|
116 |
+
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
117 |
+
# streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
118 |
+
# generate_kwargs = dict(
|
119 |
+
# model_inputs,
|
120 |
+
# streamer=streamer,
|
121 |
+
# max_new_tokens=1024,
|
122 |
+
# do_sample=True,
|
123 |
+
# top_p=0.95,
|
124 |
+
# top_k=50,
|
125 |
+
# temperature=0.5,
|
126 |
+
# num_beams=1,
|
127 |
+
# stopping_criteria=StoppingCriteriaList([stop])
|
128 |
+
# )
|
129 |
+
# t = Thread(target=model.generate, kwargs=generate_kwargs)
|
130 |
+
# t.start() # Starting the generation in a separate thread.
|
131 |
+
# partial_message = ""
|
132 |
+
# for new_token in streamer:
|
133 |
+
# partial_message += new_token
|
134 |
+
# if '</s>' in partial_message: # Breaking the loop if the stop token is generated.
|
135 |
+
# break
|
136 |
+
# yield partial_message
|
137 |
+
|
138 |
+
|
139 |
+
# # Setting up the Gradio chat interface.
|
140 |
+
# gr.ChatInterface(predict,
|
141 |
+
# title="Tinyllama_chatBot",
|
142 |
+
# description="Ask Tiny llama any questions",
|
143 |
+
# examples=['How to cook a fish?', 'Who is the president of US now?']
|
144 |
+
# ).launch(share=True) # Launching the web interface.
|
hinglish_dataset_opt.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:909a0a8877746a55d2c34eb7d5e1786165a8abef077773816f7994bca76a61cc
|
3 |
+
size 22937637
|