File size: 4,992 Bytes
7f2debe
 
68211b0
7f2debe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68211b0
7f2debe
68211b0
 
 
7f2debe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68211b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2debe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55

This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2137
- Accuracy: 0.6150
- F1: 0.6155

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 4.3541        | 1.09  | 500   | 3.1863          | 0.5721   | 0.5729 |
| 3.0722        | 2.17  | 1000  | 3.2433          | 0.5845   | 0.5841 |
| 2.1971        | 3.26  | 1500  | 3.4852          | 0.5907   | 0.5891 |
| 1.6717        | 4.35  | 2000  | 3.3784          | 0.5841   | 0.5859 |
| 1.3144        | 5.43  | 2500  | 3.7616          | 0.5864   | 0.5846 |
| 1.1448        | 6.52  | 3000  | 3.4276          | 0.5779   | 0.5777 |
| 0.9875        | 7.61  | 3500  | 3.3781          | 0.5953   | 0.5946 |
| 0.8762        | 8.7   | 4000  | 3.1471          | 0.5829   | 0.5843 |
| 0.7963        | 9.78  | 4500  | 3.3721          | 0.5752   | 0.5756 |
| 0.7369        | 10.87 | 5000  | 3.5433          | 0.5837   | 0.5839 |
| 0.6786        | 11.96 | 5500  | 3.3185          | 0.5783   | 0.5793 |
| 0.6271        | 13.04 | 6000  | 3.1903          | 0.5903   | 0.5869 |
| 0.5889        | 14.13 | 6500  | 3.3031          | 0.5895   | 0.5899 |
| 0.5569        | 15.22 | 7000  | 3.2597          | 0.5995   | 0.5987 |
| 0.5229        | 16.3  | 7500  | 3.1515          | 0.5883   | 0.5893 |
| 0.4985        | 17.39 | 8000  | 3.1954          | 0.5992   | 0.5997 |
| 0.4751        | 18.48 | 8500  | 3.2670          | 0.5988   | 0.5990 |
| 0.4643        | 19.57 | 9000  | 3.1884          | 0.5961   | 0.5948 |
| 0.4434        | 20.65 | 9500  | 3.2196          | 0.5984   | 0.5972 |
| 0.4381        | 21.74 | 10000 | 3.2211          | 0.5922   | 0.5934 |
| 0.4193        | 22.83 | 10500 | 3.1172          | 0.5992   | 0.5990 |
| 0.4113        | 23.91 | 11000 | 3.3000          | 0.6107   | 0.6114 |
| 0.4008        | 25.0  | 11500 | 3.1179          | 0.6015   | 0.6024 |
| 0.3914        | 26.09 | 12000 | 3.1496          | 0.5926   | 0.5925 |
| 0.3861        | 27.17 | 12500 | 3.2896          | 0.5934   | 0.5942 |
| 0.3768        | 28.26 | 13000 | 3.1737          | 0.6065   | 0.6076 |
| 0.3767        | 29.35 | 13500 | 3.2205          | 0.6038   | 0.6034 |
| 0.3687        | 30.43 | 14000 | 3.3223          | 0.6049   | 0.6046 |
| 0.3663        | 31.52 | 14500 | 3.0866          | 0.6015   | 0.6021 |
| 0.3542        | 32.61 | 15000 | 3.1709          | 0.6107   | 0.6119 |
| 0.3549        | 33.7  | 15500 | 3.2819          | 0.5965   | 0.5976 |
| 0.3476        | 34.78 | 16000 | 3.2686          | 0.5995   | 0.6002 |
| 0.3452        | 35.87 | 16500 | 3.2558          | 0.6015   | 0.6018 |
| 0.346         | 36.96 | 17000 | 3.1651          | 0.5953   | 0.5962 |
| 0.3402        | 38.04 | 17500 | 3.1907          | 0.6084   | 0.6086 |
| 0.3385        | 39.13 | 18000 | 3.1962          | 0.6096   | 0.6098 |
| 0.3389        | 40.22 | 18500 | 3.1716          | 0.6088   | 0.6091 |
| 0.3322        | 41.3  | 19000 | 3.1679          | 0.6092   | 0.6096 |
| 0.3288        | 42.39 | 19500 | 3.2305          | 0.6046   | 0.6044 |
| 0.333         | 43.48 | 20000 | 3.2468          | 0.6011   | 0.6016 |
| 0.33          | 44.57 | 20500 | 3.1011          | 0.6177   | 0.6180 |
| 0.3322        | 45.65 | 21000 | 3.2199          | 0.5980   | 0.5984 |
| 0.3267        | 46.74 | 21500 | 3.2237          | 0.6130   | 0.6132 |
| 0.3268        | 47.83 | 22000 | 3.2034          | 0.6038   | 0.6042 |
| 0.3238        | 48.91 | 22500 | 3.1129          | 0.6103   | 0.6106 |
| 0.324         | 50.0  | 23000 | 3.2137          | 0.6150   | 0.6155 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3