--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-KD-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only55 results: [] --- # scenario-KD-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only55 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 23.6899 - Accuracy: 0.4665 - F1: 0.4662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 55 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.72 | 100 | 15.5667 | 0.4356 | 0.4288 | | No log | 3.45 | 200 | 17.1164 | 0.4418 | 0.4096 | | No log | 5.17 | 300 | 18.8679 | 0.4634 | 0.4606 | | No log | 6.9 | 400 | 19.9135 | 0.4550 | 0.4494 | | 9.9963 | 8.62 | 500 | 23.0517 | 0.4581 | 0.4517 | | 9.9963 | 10.34 | 600 | 21.4184 | 0.4493 | 0.4394 | | 9.9963 | 12.07 | 700 | 22.8898 | 0.4621 | 0.4584 | | 9.9963 | 13.79 | 800 | 22.6673 | 0.4462 | 0.4352 | | 9.9963 | 15.52 | 900 | 23.8054 | 0.4616 | 0.4605 | | 1.7937 | 17.24 | 1000 | 23.0995 | 0.4586 | 0.4524 | | 1.7937 | 18.97 | 1100 | 23.2337 | 0.4709 | 0.4682 | | 1.7937 | 20.69 | 1200 | 24.9664 | 0.4669 | 0.4646 | | 1.7937 | 22.41 | 1300 | 23.8143 | 0.4700 | 0.4695 | | 1.7937 | 24.14 | 1400 | 23.9374 | 0.4581 | 0.4546 | | 0.6046 | 25.86 | 1500 | 24.0218 | 0.4647 | 0.4651 | | 0.6046 | 27.59 | 1600 | 23.0812 | 0.4740 | 0.4735 | | 0.6046 | 29.31 | 1700 | 23.6899 | 0.4665 | 0.4662 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3