haryoaw commited on
Commit
db8235e
1 Parent(s): 01aa118

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +175 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_144
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_144
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.1139
24
+ - Accuracy: 0.8659
25
+ - F1: 0.8466
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 44
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
56
+ | 1.7627 | 0.27 | 5000 | 1.9858 | 0.8200 | 0.7785 |
57
+ | 1.3268 | 0.53 | 10000 | 1.7497 | 0.8353 | 0.8042 |
58
+ | 1.1431 | 0.8 | 15000 | 1.6427 | 0.8403 | 0.8129 |
59
+ | 0.846 | 1.07 | 20000 | 1.5717 | 0.8445 | 0.8134 |
60
+ | 0.7952 | 1.34 | 25000 | 1.5650 | 0.8457 | 0.8207 |
61
+ | 0.7416 | 1.6 | 30000 | 1.5495 | 0.8493 | 0.8246 |
62
+ | 0.713 | 1.87 | 35000 | 1.4702 | 0.8518 | 0.8325 |
63
+ | 0.6101 | 2.14 | 40000 | 1.4505 | 0.8522 | 0.8287 |
64
+ | 0.591 | 2.41 | 45000 | 1.4639 | 0.8522 | 0.8257 |
65
+ | 0.5774 | 2.67 | 50000 | 1.4352 | 0.8498 | 0.8292 |
66
+ | 0.5564 | 2.94 | 55000 | 1.4054 | 0.8556 | 0.8357 |
67
+ | 0.48 | 3.21 | 60000 | 1.4085 | 0.8539 | 0.8330 |
68
+ | 0.4767 | 3.47 | 65000 | 1.3640 | 0.8578 | 0.8352 |
69
+ | 0.4725 | 3.74 | 70000 | 1.3570 | 0.8553 | 0.8326 |
70
+ | 0.4599 | 4.01 | 75000 | 1.3478 | 0.8568 | 0.8356 |
71
+ | 0.4328 | 4.28 | 80000 | 1.3349 | 0.8561 | 0.8329 |
72
+ | 0.4237 | 4.54 | 85000 | 1.3403 | 0.8585 | 0.8375 |
73
+ | 0.4186 | 4.81 | 90000 | 1.3329 | 0.8591 | 0.8402 |
74
+ | 0.3964 | 5.08 | 95000 | 1.3430 | 0.8552 | 0.8350 |
75
+ | 0.3896 | 5.34 | 100000 | 1.3224 | 0.8572 | 0.8369 |
76
+ | 0.4012 | 5.61 | 105000 | 1.3126 | 0.8597 | 0.8389 |
77
+ | 0.3845 | 5.88 | 110000 | 1.3096 | 0.8574 | 0.8368 |
78
+ | 0.3601 | 6.15 | 115000 | 1.2671 | 0.8597 | 0.8378 |
79
+ | 0.3608 | 6.41 | 120000 | 1.2839 | 0.8596 | 0.8374 |
80
+ | 0.3612 | 6.68 | 125000 | 1.2874 | 0.8590 | 0.8393 |
81
+ | 0.3617 | 6.95 | 130000 | 1.3028 | 0.8572 | 0.8382 |
82
+ | 0.3357 | 7.22 | 135000 | 1.2707 | 0.8597 | 0.8397 |
83
+ | 0.3467 | 7.48 | 140000 | 1.2735 | 0.8597 | 0.8407 |
84
+ | 0.3516 | 7.75 | 145000 | 1.2572 | 0.8606 | 0.8397 |
85
+ | 0.3298 | 8.02 | 150000 | 1.2609 | 0.8601 | 0.8396 |
86
+ | 0.3258 | 8.28 | 155000 | 1.2527 | 0.8585 | 0.8381 |
87
+ | 0.3301 | 8.55 | 160000 | 1.2414 | 0.8613 | 0.8445 |
88
+ | 0.3193 | 8.82 | 165000 | 1.2525 | 0.8602 | 0.8407 |
89
+ | 0.307 | 9.09 | 170000 | 1.2398 | 0.8613 | 0.8428 |
90
+ | 0.3155 | 9.35 | 175000 | 1.2209 | 0.8621 | 0.8416 |
91
+ | 0.3138 | 9.62 | 180000 | 1.2155 | 0.8617 | 0.8428 |
92
+ | 0.3108 | 9.89 | 185000 | 1.2363 | 0.8618 | 0.8420 |
93
+ | 0.2954 | 10.15 | 190000 | 1.2141 | 0.8609 | 0.8414 |
94
+ | 0.2968 | 10.42 | 195000 | 1.2331 | 0.8611 | 0.8430 |
95
+ | 0.3017 | 10.69 | 200000 | 1.2081 | 0.8618 | 0.8433 |
96
+ | 0.2989 | 10.96 | 205000 | 1.2025 | 0.8630 | 0.8438 |
97
+ | 0.2792 | 11.22 | 210000 | 1.2063 | 0.8635 | 0.8433 |
98
+ | 0.2946 | 11.49 | 215000 | 1.1898 | 0.8639 | 0.8435 |
99
+ | 0.2778 | 11.76 | 220000 | 1.2013 | 0.8625 | 0.8428 |
100
+ | 0.2757 | 12.03 | 225000 | 1.1908 | 0.8627 | 0.8439 |
101
+ | 0.2763 | 12.29 | 230000 | 1.1906 | 0.8631 | 0.8424 |
102
+ | 0.2699 | 12.56 | 235000 | 1.1894 | 0.8629 | 0.8422 |
103
+ | 0.2716 | 12.83 | 240000 | 1.1887 | 0.8643 | 0.8460 |
104
+ | 0.2715 | 13.09 | 245000 | 1.1940 | 0.8634 | 0.8463 |
105
+ | 0.2659 | 13.36 | 250000 | 1.1844 | 0.8642 | 0.8443 |
106
+ | 0.2693 | 13.63 | 255000 | 1.1844 | 0.8642 | 0.8446 |
107
+ | 0.2654 | 13.9 | 260000 | 1.1784 | 0.8637 | 0.8454 |
108
+ | 0.2522 | 14.16 | 265000 | 1.1728 | 0.8641 | 0.8433 |
109
+ | 0.2604 | 14.43 | 270000 | 1.1878 | 0.8627 | 0.8415 |
110
+ | 0.2489 | 14.7 | 275000 | 1.1795 | 0.8640 | 0.8437 |
111
+ | 0.2611 | 14.96 | 280000 | 1.1585 | 0.8648 | 0.8450 |
112
+ | 0.246 | 15.23 | 285000 | 1.1574 | 0.8647 | 0.8452 |
113
+ | 0.2482 | 15.5 | 290000 | 1.1654 | 0.8633 | 0.8427 |
114
+ | 0.2423 | 15.77 | 295000 | 1.1683 | 0.8632 | 0.8416 |
115
+ | 0.2387 | 16.03 | 300000 | 1.1736 | 0.8625 | 0.8415 |
116
+ | 0.2417 | 16.3 | 305000 | 1.1686 | 0.8635 | 0.8437 |
117
+ | 0.2433 | 16.57 | 310000 | 1.1639 | 0.8626 | 0.8410 |
118
+ | 0.2405 | 16.84 | 315000 | 1.1647 | 0.8632 | 0.8421 |
119
+ | 0.2327 | 17.1 | 320000 | 1.1459 | 0.8642 | 0.8446 |
120
+ | 0.2374 | 17.37 | 325000 | 1.1513 | 0.8643 | 0.8454 |
121
+ | 0.233 | 17.64 | 330000 | 1.1479 | 0.8649 | 0.8438 |
122
+ | 0.2381 | 17.9 | 335000 | 1.1556 | 0.8643 | 0.8450 |
123
+ | 0.2228 | 18.17 | 340000 | 1.1523 | 0.8648 | 0.8461 |
124
+ | 0.2305 | 18.44 | 345000 | 1.1523 | 0.8635 | 0.8440 |
125
+ | 0.2244 | 18.71 | 350000 | 1.1507 | 0.8648 | 0.8450 |
126
+ | 0.2212 | 18.97 | 355000 | 1.1413 | 0.8650 | 0.8451 |
127
+ | 0.2207 | 19.24 | 360000 | 1.1401 | 0.8644 | 0.8466 |
128
+ | 0.2164 | 19.51 | 365000 | 1.1518 | 0.8630 | 0.8426 |
129
+ | 0.2232 | 19.77 | 370000 | 1.1469 | 0.8640 | 0.8452 |
130
+ | 0.2147 | 20.04 | 375000 | 1.1495 | 0.8629 | 0.8433 |
131
+ | 0.2089 | 20.31 | 380000 | 1.1392 | 0.8657 | 0.8457 |
132
+ | 0.2074 | 20.58 | 385000 | 1.1381 | 0.8643 | 0.8441 |
133
+ | 0.2149 | 20.84 | 390000 | 1.1415 | 0.8639 | 0.8447 |
134
+ | 0.2074 | 21.11 | 395000 | 1.1307 | 0.8647 | 0.8441 |
135
+ | 0.2087 | 21.38 | 400000 | 1.1351 | 0.8641 | 0.8432 |
136
+ | 0.2104 | 21.65 | 405000 | 1.1312 | 0.8644 | 0.8448 |
137
+ | 0.2078 | 21.91 | 410000 | 1.1296 | 0.8650 | 0.8457 |
138
+ | 0.2038 | 22.18 | 415000 | 1.1249 | 0.8657 | 0.8452 |
139
+ | 0.2037 | 22.45 | 420000 | 1.1334 | 0.8643 | 0.8444 |
140
+ | 0.2027 | 22.71 | 425000 | 1.1280 | 0.8644 | 0.8446 |
141
+ | 0.2041 | 22.98 | 430000 | 1.1321 | 0.8640 | 0.8467 |
142
+ | 0.1921 | 23.25 | 435000 | 1.1324 | 0.8635 | 0.8445 |
143
+ | 0.2007 | 23.52 | 440000 | 1.1248 | 0.8649 | 0.8458 |
144
+ | 0.2018 | 23.78 | 445000 | 1.1274 | 0.8649 | 0.8451 |
145
+ | 0.2009 | 24.05 | 450000 | 1.1204 | 0.8654 | 0.8473 |
146
+ | 0.2017 | 24.32 | 455000 | 1.1245 | 0.8651 | 0.8450 |
147
+ | 0.1977 | 24.58 | 460000 | 1.1234 | 0.8649 | 0.8461 |
148
+ | 0.1974 | 24.85 | 465000 | 1.1234 | 0.8646 | 0.8445 |
149
+ | 0.1934 | 25.12 | 470000 | 1.1220 | 0.8655 | 0.8457 |
150
+ | 0.1937 | 25.39 | 475000 | 1.1183 | 0.8659 | 0.8470 |
151
+ | 0.1947 | 25.65 | 480000 | 1.1207 | 0.8653 | 0.8449 |
152
+ | 0.1932 | 25.92 | 485000 | 1.1172 | 0.8660 | 0.8465 |
153
+ | 0.1904 | 26.19 | 490000 | 1.1250 | 0.8651 | 0.8462 |
154
+ | 0.1892 | 26.46 | 495000 | 1.1171 | 0.8661 | 0.8470 |
155
+ | 0.196 | 26.72 | 500000 | 1.1207 | 0.8652 | 0.8456 |
156
+ | 0.1927 | 26.99 | 505000 | 1.1174 | 0.8651 | 0.8454 |
157
+ | 0.1888 | 27.26 | 510000 | 1.1183 | 0.8653 | 0.8457 |
158
+ | 0.1906 | 27.52 | 515000 | 1.1190 | 0.8646 | 0.8455 |
159
+ | 0.1854 | 27.79 | 520000 | 1.1098 | 0.8655 | 0.8450 |
160
+ | 0.1869 | 28.06 | 525000 | 1.1173 | 0.8658 | 0.8463 |
161
+ | 0.1829 | 28.33 | 530000 | 1.1157 | 0.8654 | 0.8453 |
162
+ | 0.1909 | 28.59 | 535000 | 1.1135 | 0.8655 | 0.8459 |
163
+ | 0.1853 | 28.86 | 540000 | 1.1103 | 0.8663 | 0.8475 |
164
+ | 0.1847 | 29.13 | 545000 | 1.1141 | 0.8651 | 0.8455 |
165
+ | 0.1814 | 29.39 | 550000 | 1.1101 | 0.8655 | 0.8456 |
166
+ | 0.1794 | 29.66 | 555000 | 1.1113 | 0.8657 | 0.8460 |
167
+ | 0.1842 | 29.93 | 560000 | 1.1139 | 0.8659 | 0.8466 |
168
+
169
+
170
+ ### Framework versions
171
+
172
+ - Transformers 4.33.3
173
+ - Pytorch 2.1.1+cu121
174
+ - Datasets 2.14.5
175
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"km-KH": {"f1": 0.7611961476733919, "accuracy": 0.7958977807666443}, "cy-GB": {"f1": 0.7914203485756629, "accuracy": 0.8507061197041023}, "ja-JP": {"f1": 0.8363121028473876, "accuracy": 0.8826496301277741}, "az-AZ": {"f1": 0.8403102118858833, "accuracy": 0.8735709482178884}, "af-ZA": {"f1": 0.8304238763856235, "accuracy": 0.8782784129119031}, "en-US": {"f1": 0.8569278074939414, "accuracy": 0.8917283120376597}, "it-IT": {"f1": 0.8315701789013726, "accuracy": 0.8759246805648958}, "zh-CN": {"f1": 0.8176455550666916, "accuracy": 0.8624747814391392}, "ta-IN": {"f1": 0.8253357286616485, "accuracy": 0.8587760591795561}, "ca-ES": {"f1": 0.8281170799905542, "accuracy": 0.8715534633490248}, "da-DK": {"f1": 0.8393952212461316, "accuracy": 0.8823133826496301}, "is-IS": {"f1": 0.8255887178500697, "accuracy": 0.863483523873571}, "pt-PT": {"f1": 0.8327142111005555, "accuracy": 0.878950907868191}, "fi-FI": {"f1": 0.8093813599428811, "accuracy": 0.859448554135844}, "de-DE": {"f1": 0.8260137312936836, "accuracy": 0.8698722259583053}, "id-ID": {"f1": 0.83010746925642, "accuracy": 0.8702084734364492}, "hu-HU": {"f1": 0.8208048879542581, "accuracy": 0.8725622057834567}, "ur-PK": {"f1": 0.7987002392622079, "accuracy": 0.8537323470073974}, "nl-NL": {"f1": 0.8357890337878925, "accuracy": 0.878950907868191}, "sq-AL": {"f1": 0.8315304160978993, "accuracy": 0.8678547410894418}, "tr-TR": {"f1": 0.8268939397650142, "accuracy": 0.8718897108271688}, "ml-IN": {"f1": 0.8180441407015506, "accuracy": 0.863483523873571}, "my-MM": {"f1": 0.8201940210169766, "accuracy": 0.8614660390047074}, "sw-KE": {"f1": 0.8107076915101216, "accuracy": 0.8564223268325487}, "jv-ID": {"f1": 0.8287536825308965, "accuracy": 0.855749831876261}, "pl-PL": {"f1": 0.8465187133176456, "accuracy": 0.8755884330867518}, "th-TH": {"f1": 0.8446697081723683, "accuracy": 0.8618022864828514}, "am-ET": {"f1": 0.7827216161207514, "accuracy": 0.8402824478816409}, "sv-SE": {"f1": 0.8381677336663876, "accuracy": 0.8833221250840618}, "nb-NO": {"f1": 0.8374313971963855, "accuracy": 0.878950907868191}, "kn-IN": {"f1": 0.811973058366813, "accuracy": 0.8550773369199731}, "ru-RU": {"f1": 0.8381077207957155, "accuracy": 0.8765971755211835}, "he-IL": {"f1": 0.8242433774340995, "accuracy": 0.8628110289172831}, "mn-MN": {"f1": 0.816137546341963, "accuracy": 0.8587760591795561}, "hy-AM": {"f1": 0.8131757212770996, "accuracy": 0.8581035642232683}, "hi-IN": {"f1": 0.8189975255418972, "accuracy": 0.871217215870881}, "tl-PH": {"f1": 0.8208334490938679, "accuracy": 0.8587760591795561}, "ro-RO": {"f1": 0.8266994335065792, "accuracy": 0.8732347007397444}, "te-IN": {"f1": 0.8246278686024511, "accuracy": 0.8607935440484197}, "bn-BD": {"f1": 0.8205185573888092, "accuracy": 0.8601210490921318}, "ar-SA": {"f1": 0.8030137114405768, "accuracy": 0.8271687962340283}, "lv-LV": {"f1": 0.834501915752714, "accuracy": 0.8688634835238735}, "fa-IR": {"f1": 0.8275740853190123, "accuracy": 0.8782784129119031}, "ms-MY": {"f1": 0.8333480807568078, "accuracy": 0.8722259583053127}, "zh-TW": {"f1": 0.8176351550920634, "accuracy": 0.8456624075319435}, "es-ES": {"f1": 0.8538587008302448, "accuracy": 0.8802958977807667}, "ka-GE": {"f1": 0.7881337029370179, "accuracy": 0.8234700739744452}, "fr-FR": {"f1": 0.8260789739257974, "accuracy": 0.8772696704774714}, "el-GR": {"f1": 0.8384850078633445, "accuracy": 0.8722259583053127}, "vi-VN": {"f1": 0.8214004485117905, "accuracy": 0.8688634835238735}, "ko-KR": {"f1": 0.8446832611744346, "accuracy": 0.8695359784801614}, "sl-SL": {"f1": 0.8138614113192358, "accuracy": 0.8641560188298588}, "all": {"f1": 0.8227516640843044, "accuracy": 0.8649125756556826}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d27d9f23b5a427143be452899b153ef2be0ab296a42340e4e9fe2dea39972de
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bedd29fa2dc0d3eb600af2d47c835dee3bfea16a48c05f6b9275a28162533de9
3
+ size 4600