File size: 4,992 Bytes
d3aafb0
 
0d4ff9c
d3aafb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4ff9c
d3aafb0
0d4ff9c
 
 
d3aafb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4ff9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3aafb0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all55

This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2180
- Accuracy: 0.5999
- F1: 0.6008

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 1.2423        | 1.09  | 500   | 1.2214          | 0.4842   | 0.4591 |
| 1.1465        | 2.17  | 1000  | 1.2081          | 0.5498   | 0.5406 |
| 1.089         | 3.26  | 1500  | 1.2345          | 0.5540   | 0.5476 |
| 1.043         | 4.35  | 2000  | 1.2340          | 0.5756   | 0.5777 |
| 1.01          | 5.43  | 2500  | 1.2397          | 0.5706   | 0.5717 |
| 0.9787        | 6.52  | 3000  | 1.2536          | 0.5718   | 0.5723 |
| 0.9656        | 7.61  | 3500  | 1.2564          | 0.5579   | 0.5603 |
| 0.9505        | 8.7   | 4000  | 1.2641          | 0.5644   | 0.5660 |
| 0.9432        | 9.78  | 4500  | 1.2385          | 0.5880   | 0.5876 |
| 0.9304        | 10.87 | 5000  | 1.2612          | 0.5864   | 0.5862 |
| 0.9245        | 11.96 | 5500  | 1.2567          | 0.5748   | 0.5728 |
| 0.9189        | 13.04 | 6000  | 1.2463          | 0.5745   | 0.5745 |
| 0.9131        | 14.13 | 6500  | 1.2599          | 0.5729   | 0.5738 |
| 0.9098        | 15.22 | 7000  | 1.2614          | 0.5706   | 0.5704 |
| 0.9052        | 16.3  | 7500  | 1.2468          | 0.5741   | 0.5748 |
| 0.9013        | 17.39 | 8000  | 1.2550          | 0.5756   | 0.5775 |
| 0.8972        | 18.48 | 8500  | 1.2661          | 0.5733   | 0.5743 |
| 0.8972        | 19.57 | 9000  | 1.2506          | 0.5783   | 0.5780 |
| 0.8912        | 20.65 | 9500  | 1.2519          | 0.5737   | 0.5752 |
| 0.8903        | 21.74 | 10000 | 1.2313          | 0.5795   | 0.5782 |
| 0.8868        | 22.83 | 10500 | 1.2384          | 0.5895   | 0.5896 |
| 0.8847        | 23.91 | 11000 | 1.2474          | 0.5752   | 0.5736 |
| 0.8834        | 25.0  | 11500 | 1.2458          | 0.5791   | 0.5795 |
| 0.8815        | 26.09 | 12000 | 1.2548          | 0.5748   | 0.5739 |
| 0.8794        | 27.17 | 12500 | 1.2378          | 0.5864   | 0.5857 |
| 0.8791        | 28.26 | 13000 | 1.2327          | 0.5968   | 0.5953 |
| 0.8749        | 29.35 | 13500 | 1.2249          | 0.5949   | 0.5935 |
| 0.8748        | 30.43 | 14000 | 1.2309          | 0.5938   | 0.5905 |
| 0.8734        | 31.52 | 14500 | 1.2242          | 0.5880   | 0.5885 |
| 0.872         | 32.61 | 15000 | 1.2372          | 0.5841   | 0.5856 |
| 0.8712        | 33.7  | 15500 | 1.2394          | 0.5783   | 0.5800 |
| 0.87          | 34.78 | 16000 | 1.2363          | 0.5922   | 0.5921 |
| 0.8692        | 35.87 | 16500 | 1.2375          | 0.5903   | 0.5916 |
| 0.8677        | 36.96 | 17000 | 1.2341          | 0.5968   | 0.5951 |
| 0.8672        | 38.04 | 17500 | 1.2227          | 0.6038   | 0.6013 |
| 0.8657        | 39.13 | 18000 | 1.2250          | 0.5899   | 0.5904 |
| 0.865         | 40.22 | 18500 | 1.2275          | 0.5949   | 0.5952 |
| 0.865         | 41.3  | 19000 | 1.2196          | 0.5953   | 0.5958 |
| 0.864         | 42.39 | 19500 | 1.2375          | 0.5818   | 0.5815 |
| 0.8636        | 43.48 | 20000 | 1.2373          | 0.5849   | 0.5856 |
| 0.8635        | 44.57 | 20500 | 1.2292          | 0.5930   | 0.5940 |
| 0.8622        | 45.65 | 21000 | 1.2243          | 0.5903   | 0.5914 |
| 0.8619        | 46.74 | 21500 | 1.2198          | 0.5984   | 0.5992 |
| 0.8608        | 47.83 | 22000 | 1.2175          | 0.6046   | 0.6054 |
| 0.8621        | 48.91 | 22500 | 1.2179          | 0.5995   | 0.6004 |
| 0.8606        | 50.0  | 23000 | 1.2180          | 0.5999   | 0.6008 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3