--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-KD-PR-CDF-EN-FROM-CL-D2_data-en-cardiff_eng_only66 results: [] --- # scenario-KD-PR-CDF-EN-FROM-CL-D2_data-en-cardiff_eng_only66 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3328 - Accuracy: 0.4881 - F1: 0.4886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.72 | 100 | 1.3021 | 0.4947 | 0.4907 | | No log | 3.45 | 200 | 1.3343 | 0.4713 | 0.4544 | | No log | 5.17 | 300 | 1.3753 | 0.4899 | 0.4851 | | No log | 6.9 | 400 | 1.3847 | 0.4572 | 0.4442 | | 1.1115 | 8.62 | 500 | 1.3543 | 0.4757 | 0.4743 | | 1.1115 | 10.34 | 600 | 1.3693 | 0.4691 | 0.4612 | | 1.1115 | 12.07 | 700 | 1.3906 | 0.4687 | 0.4600 | | 1.1115 | 13.79 | 800 | 1.3669 | 0.4700 | 0.4635 | | 1.1115 | 15.52 | 900 | 1.3459 | 0.4899 | 0.4892 | | 0.9572 | 17.24 | 1000 | 1.3562 | 0.4912 | 0.4872 | | 0.9572 | 18.97 | 1100 | 1.3492 | 0.4846 | 0.4842 | | 0.9572 | 20.69 | 1200 | 1.3918 | 0.4660 | 0.4504 | | 0.9572 | 22.41 | 1300 | 1.3279 | 0.4960 | 0.4932 | | 0.9572 | 24.14 | 1400 | 1.3440 | 0.4832 | 0.4832 | | 0.936 | 25.86 | 1500 | 1.3460 | 0.4863 | 0.4863 | | 0.936 | 27.59 | 1600 | 1.3371 | 0.4907 | 0.4909 | | 0.936 | 29.31 | 1700 | 1.3328 | 0.4881 | 0.4886 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3