--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-KD-PR-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 results: [] --- # scenario-KD-PR-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3348 - Accuracy: 0.4846 - F1: 0.4848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.72 | 100 | 1.3126 | 0.4718 | 0.4615 | | No log | 3.45 | 200 | 1.3334 | 0.4638 | 0.4466 | | No log | 5.17 | 300 | 1.3417 | 0.4810 | 0.4818 | | No log | 6.9 | 400 | 1.3541 | 0.4766 | 0.4702 | | 1.1194 | 8.62 | 500 | 1.3613 | 0.4916 | 0.4913 | | 1.1194 | 10.34 | 600 | 1.3438 | 0.4797 | 0.4784 | | 1.1194 | 12.07 | 700 | 1.3501 | 0.4713 | 0.4713 | | 1.1194 | 13.79 | 800 | 1.3617 | 0.4687 | 0.4683 | | 1.1194 | 15.52 | 900 | 1.3527 | 0.4819 | 0.4812 | | 0.9567 | 17.24 | 1000 | 1.3561 | 0.4824 | 0.4777 | | 0.9567 | 18.97 | 1100 | 1.3531 | 0.4749 | 0.4732 | | 0.9567 | 20.69 | 1200 | 1.3379 | 0.4960 | 0.4965 | | 0.9567 | 22.41 | 1300 | 1.3384 | 0.4797 | 0.4793 | | 0.9567 | 24.14 | 1400 | 1.3404 | 0.4824 | 0.4807 | | 0.9355 | 25.86 | 1500 | 1.3475 | 0.4753 | 0.4755 | | 0.9355 | 27.59 | 1600 | 1.3409 | 0.4780 | 0.4776 | | 0.9355 | 29.31 | 1700 | 1.3348 | 0.4846 | 0.4848 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3