Initial Commit
Browse files- README.md +171 -0
- config.json +159 -0
- eval_results_ml.json +1 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- massive
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_144
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# scenario-KD-SCR-MSV-EN-EN-D2_data-en-massive_all_1_144
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1) on the massive dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: nan
|
24 |
+
- Accuracy: 0.0315
|
25 |
+
- F1: 0.0010
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 44
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 30
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
56 |
+
| No log | 0.28 | 100 | nan | 0.0315 | 0.0010 |
|
57 |
+
| No log | 0.56 | 200 | nan | 0.0315 | 0.0010 |
|
58 |
+
| No log | 0.83 | 300 | nan | 0.0315 | 0.0010 |
|
59 |
+
| No log | 1.11 | 400 | nan | 0.0315 | 0.0010 |
|
60 |
+
| 2.4588 | 1.39 | 500 | nan | 0.0315 | 0.0010 |
|
61 |
+
| 2.4588 | 1.67 | 600 | nan | 0.0315 | 0.0010 |
|
62 |
+
| 2.4588 | 1.94 | 700 | nan | 0.0315 | 0.0010 |
|
63 |
+
| 2.4588 | 2.22 | 800 | nan | 0.0315 | 0.0010 |
|
64 |
+
| 2.4588 | 2.5 | 900 | nan | 0.0315 | 0.0010 |
|
65 |
+
| 0.0 | 2.78 | 1000 | nan | 0.0315 | 0.0010 |
|
66 |
+
| 0.0 | 3.06 | 1100 | nan | 0.0315 | 0.0010 |
|
67 |
+
| 0.0 | 3.33 | 1200 | nan | 0.0315 | 0.0010 |
|
68 |
+
| 0.0 | 3.61 | 1300 | nan | 0.0315 | 0.0010 |
|
69 |
+
| 0.0 | 3.89 | 1400 | nan | 0.0315 | 0.0010 |
|
70 |
+
| 0.0 | 4.17 | 1500 | nan | 0.0315 | 0.0010 |
|
71 |
+
| 0.0 | 4.44 | 1600 | nan | 0.0315 | 0.0010 |
|
72 |
+
| 0.0 | 4.72 | 1700 | nan | 0.0315 | 0.0010 |
|
73 |
+
| 0.0 | 5.0 | 1800 | nan | 0.0315 | 0.0010 |
|
74 |
+
| 0.0 | 5.28 | 1900 | nan | 0.0315 | 0.0010 |
|
75 |
+
| 0.0 | 5.56 | 2000 | nan | 0.0315 | 0.0010 |
|
76 |
+
| 0.0 | 5.83 | 2100 | nan | 0.0315 | 0.0010 |
|
77 |
+
| 0.0 | 6.11 | 2200 | nan | 0.0315 | 0.0010 |
|
78 |
+
| 0.0 | 6.39 | 2300 | nan | 0.0315 | 0.0010 |
|
79 |
+
| 0.0 | 6.67 | 2400 | nan | 0.0315 | 0.0010 |
|
80 |
+
| 0.0 | 6.94 | 2500 | nan | 0.0315 | 0.0010 |
|
81 |
+
| 0.0 | 7.22 | 2600 | nan | 0.0315 | 0.0010 |
|
82 |
+
| 0.0 | 7.5 | 2700 | nan | 0.0315 | 0.0010 |
|
83 |
+
| 0.0 | 7.78 | 2800 | nan | 0.0315 | 0.0010 |
|
84 |
+
| 0.0 | 8.06 | 2900 | nan | 0.0315 | 0.0010 |
|
85 |
+
| 0.0 | 8.33 | 3000 | nan | 0.0315 | 0.0010 |
|
86 |
+
| 0.0 | 8.61 | 3100 | nan | 0.0315 | 0.0010 |
|
87 |
+
| 0.0 | 8.89 | 3200 | nan | 0.0315 | 0.0010 |
|
88 |
+
| 0.0 | 9.17 | 3300 | nan | 0.0315 | 0.0010 |
|
89 |
+
| 0.0 | 9.44 | 3400 | nan | 0.0315 | 0.0010 |
|
90 |
+
| 0.0 | 9.72 | 3500 | nan | 0.0315 | 0.0010 |
|
91 |
+
| 0.0 | 10.0 | 3600 | nan | 0.0315 | 0.0010 |
|
92 |
+
| 0.0 | 10.28 | 3700 | nan | 0.0315 | 0.0010 |
|
93 |
+
| 0.0 | 10.56 | 3800 | nan | 0.0315 | 0.0010 |
|
94 |
+
| 0.0 | 10.83 | 3900 | nan | 0.0315 | 0.0010 |
|
95 |
+
| 0.0 | 11.11 | 4000 | nan | 0.0315 | 0.0010 |
|
96 |
+
| 0.0 | 11.39 | 4100 | nan | 0.0315 | 0.0010 |
|
97 |
+
| 0.0 | 11.67 | 4200 | nan | 0.0315 | 0.0010 |
|
98 |
+
| 0.0 | 11.94 | 4300 | nan | 0.0315 | 0.0010 |
|
99 |
+
| 0.0 | 12.22 | 4400 | nan | 0.0315 | 0.0010 |
|
100 |
+
| 0.0 | 12.5 | 4500 | nan | 0.0315 | 0.0010 |
|
101 |
+
| 0.0 | 12.78 | 4600 | nan | 0.0315 | 0.0010 |
|
102 |
+
| 0.0 | 13.06 | 4700 | nan | 0.0315 | 0.0010 |
|
103 |
+
| 0.0 | 13.33 | 4800 | nan | 0.0315 | 0.0010 |
|
104 |
+
| 0.0 | 13.61 | 4900 | nan | 0.0315 | 0.0010 |
|
105 |
+
| 0.0 | 13.89 | 5000 | nan | 0.0315 | 0.0010 |
|
106 |
+
| 0.0 | 14.17 | 5100 | nan | 0.0315 | 0.0010 |
|
107 |
+
| 0.0 | 14.44 | 5200 | nan | 0.0315 | 0.0010 |
|
108 |
+
| 0.0 | 14.72 | 5300 | nan | 0.0315 | 0.0010 |
|
109 |
+
| 0.0 | 15.0 | 5400 | nan | 0.0315 | 0.0010 |
|
110 |
+
| 0.0 | 15.28 | 5500 | nan | 0.0315 | 0.0010 |
|
111 |
+
| 0.0 | 15.56 | 5600 | nan | 0.0315 | 0.0010 |
|
112 |
+
| 0.0 | 15.83 | 5700 | nan | 0.0315 | 0.0010 |
|
113 |
+
| 0.0 | 16.11 | 5800 | nan | 0.0315 | 0.0010 |
|
114 |
+
| 0.0 | 16.39 | 5900 | nan | 0.0315 | 0.0010 |
|
115 |
+
| 0.0 | 16.67 | 6000 | nan | 0.0315 | 0.0010 |
|
116 |
+
| 0.0 | 16.94 | 6100 | nan | 0.0315 | 0.0010 |
|
117 |
+
| 0.0 | 17.22 | 6200 | nan | 0.0315 | 0.0010 |
|
118 |
+
| 0.0 | 17.5 | 6300 | nan | 0.0315 | 0.0010 |
|
119 |
+
| 0.0 | 17.78 | 6400 | nan | 0.0315 | 0.0010 |
|
120 |
+
| 0.0 | 18.06 | 6500 | nan | 0.0315 | 0.0010 |
|
121 |
+
| 0.0 | 18.33 | 6600 | nan | 0.0315 | 0.0010 |
|
122 |
+
| 0.0 | 18.61 | 6700 | nan | 0.0315 | 0.0010 |
|
123 |
+
| 0.0 | 18.89 | 6800 | nan | 0.0315 | 0.0010 |
|
124 |
+
| 0.0 | 19.17 | 6900 | nan | 0.0315 | 0.0010 |
|
125 |
+
| 0.0 | 19.44 | 7000 | nan | 0.0315 | 0.0010 |
|
126 |
+
| 0.0 | 19.72 | 7100 | nan | 0.0315 | 0.0010 |
|
127 |
+
| 0.0 | 20.0 | 7200 | nan | 0.0315 | 0.0010 |
|
128 |
+
| 0.0 | 20.28 | 7300 | nan | 0.0315 | 0.0010 |
|
129 |
+
| 0.0 | 20.56 | 7400 | nan | 0.0315 | 0.0010 |
|
130 |
+
| 0.0 | 20.83 | 7500 | nan | 0.0315 | 0.0010 |
|
131 |
+
| 0.0 | 21.11 | 7600 | nan | 0.0315 | 0.0010 |
|
132 |
+
| 0.0 | 21.39 | 7700 | nan | 0.0315 | 0.0010 |
|
133 |
+
| 0.0 | 21.67 | 7800 | nan | 0.0315 | 0.0010 |
|
134 |
+
| 0.0 | 21.94 | 7900 | nan | 0.0315 | 0.0010 |
|
135 |
+
| 0.0 | 22.22 | 8000 | nan | 0.0315 | 0.0010 |
|
136 |
+
| 0.0 | 22.5 | 8100 | nan | 0.0315 | 0.0010 |
|
137 |
+
| 0.0 | 22.78 | 8200 | nan | 0.0315 | 0.0010 |
|
138 |
+
| 0.0 | 23.06 | 8300 | nan | 0.0315 | 0.0010 |
|
139 |
+
| 0.0 | 23.33 | 8400 | nan | 0.0315 | 0.0010 |
|
140 |
+
| 0.0 | 23.61 | 8500 | nan | 0.0315 | 0.0010 |
|
141 |
+
| 0.0 | 23.89 | 8600 | nan | 0.0315 | 0.0010 |
|
142 |
+
| 0.0 | 24.17 | 8700 | nan | 0.0315 | 0.0010 |
|
143 |
+
| 0.0 | 24.44 | 8800 | nan | 0.0315 | 0.0010 |
|
144 |
+
| 0.0 | 24.72 | 8900 | nan | 0.0315 | 0.0010 |
|
145 |
+
| 0.0 | 25.0 | 9000 | nan | 0.0315 | 0.0010 |
|
146 |
+
| 0.0 | 25.28 | 9100 | nan | 0.0315 | 0.0010 |
|
147 |
+
| 0.0 | 25.56 | 9200 | nan | 0.0315 | 0.0010 |
|
148 |
+
| 0.0 | 25.83 | 9300 | nan | 0.0315 | 0.0010 |
|
149 |
+
| 0.0 | 26.11 | 9400 | nan | 0.0315 | 0.0010 |
|
150 |
+
| 0.0 | 26.39 | 9500 | nan | 0.0315 | 0.0010 |
|
151 |
+
| 0.0 | 26.67 | 9600 | nan | 0.0315 | 0.0010 |
|
152 |
+
| 0.0 | 26.94 | 9700 | nan | 0.0315 | 0.0010 |
|
153 |
+
| 0.0 | 27.22 | 9800 | nan | 0.0315 | 0.0010 |
|
154 |
+
| 0.0 | 27.5 | 9900 | nan | 0.0315 | 0.0010 |
|
155 |
+
| 0.0 | 27.78 | 10000 | nan | 0.0315 | 0.0010 |
|
156 |
+
| 0.0 | 28.06 | 10100 | nan | 0.0315 | 0.0010 |
|
157 |
+
| 0.0 | 28.33 | 10200 | nan | 0.0315 | 0.0010 |
|
158 |
+
| 0.0 | 28.61 | 10300 | nan | 0.0315 | 0.0010 |
|
159 |
+
| 0.0 | 28.89 | 10400 | nan | 0.0315 | 0.0010 |
|
160 |
+
| 0.0 | 29.17 | 10500 | nan | 0.0315 | 0.0010 |
|
161 |
+
| 0.0 | 29.44 | 10600 | nan | 0.0315 | 0.0010 |
|
162 |
+
| 0.0 | 29.72 | 10700 | nan | 0.0315 | 0.0010 |
|
163 |
+
| 0.0 | 30.0 | 10800 | nan | 0.0315 | 0.0010 |
|
164 |
+
|
165 |
+
|
166 |
+
### Framework versions
|
167 |
+
|
168 |
+
- Transformers 4.33.3
|
169 |
+
- Pytorch 2.1.1+cu121
|
170 |
+
- Datasets 2.14.5
|
171 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-MDBT-TCR_data-en-massive_all_1_1",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaForSequenceClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2",
|
14 |
+
"3": "LABEL_3",
|
15 |
+
"4": "LABEL_4",
|
16 |
+
"5": "LABEL_5",
|
17 |
+
"6": "LABEL_6",
|
18 |
+
"7": "LABEL_7",
|
19 |
+
"8": "LABEL_8",
|
20 |
+
"9": "LABEL_9",
|
21 |
+
"10": "LABEL_10",
|
22 |
+
"11": "LABEL_11",
|
23 |
+
"12": "LABEL_12",
|
24 |
+
"13": "LABEL_13",
|
25 |
+
"14": "LABEL_14",
|
26 |
+
"15": "LABEL_15",
|
27 |
+
"16": "LABEL_16",
|
28 |
+
"17": "LABEL_17",
|
29 |
+
"18": "LABEL_18",
|
30 |
+
"19": "LABEL_19",
|
31 |
+
"20": "LABEL_20",
|
32 |
+
"21": "LABEL_21",
|
33 |
+
"22": "LABEL_22",
|
34 |
+
"23": "LABEL_23",
|
35 |
+
"24": "LABEL_24",
|
36 |
+
"25": "LABEL_25",
|
37 |
+
"26": "LABEL_26",
|
38 |
+
"27": "LABEL_27",
|
39 |
+
"28": "LABEL_28",
|
40 |
+
"29": "LABEL_29",
|
41 |
+
"30": "LABEL_30",
|
42 |
+
"31": "LABEL_31",
|
43 |
+
"32": "LABEL_32",
|
44 |
+
"33": "LABEL_33",
|
45 |
+
"34": "LABEL_34",
|
46 |
+
"35": "LABEL_35",
|
47 |
+
"36": "LABEL_36",
|
48 |
+
"37": "LABEL_37",
|
49 |
+
"38": "LABEL_38",
|
50 |
+
"39": "LABEL_39",
|
51 |
+
"40": "LABEL_40",
|
52 |
+
"41": "LABEL_41",
|
53 |
+
"42": "LABEL_42",
|
54 |
+
"43": "LABEL_43",
|
55 |
+
"44": "LABEL_44",
|
56 |
+
"45": "LABEL_45",
|
57 |
+
"46": "LABEL_46",
|
58 |
+
"47": "LABEL_47",
|
59 |
+
"48": "LABEL_48",
|
60 |
+
"49": "LABEL_49",
|
61 |
+
"50": "LABEL_50",
|
62 |
+
"51": "LABEL_51",
|
63 |
+
"52": "LABEL_52",
|
64 |
+
"53": "LABEL_53",
|
65 |
+
"54": "LABEL_54",
|
66 |
+
"55": "LABEL_55",
|
67 |
+
"56": "LABEL_56",
|
68 |
+
"57": "LABEL_57",
|
69 |
+
"58": "LABEL_58",
|
70 |
+
"59": "LABEL_59"
|
71 |
+
},
|
72 |
+
"initializer_range": 0.02,
|
73 |
+
"intermediate_size": 3072,
|
74 |
+
"label2id": {
|
75 |
+
"LABEL_0": 0,
|
76 |
+
"LABEL_1": 1,
|
77 |
+
"LABEL_10": 10,
|
78 |
+
"LABEL_11": 11,
|
79 |
+
"LABEL_12": 12,
|
80 |
+
"LABEL_13": 13,
|
81 |
+
"LABEL_14": 14,
|
82 |
+
"LABEL_15": 15,
|
83 |
+
"LABEL_16": 16,
|
84 |
+
"LABEL_17": 17,
|
85 |
+
"LABEL_18": 18,
|
86 |
+
"LABEL_19": 19,
|
87 |
+
"LABEL_2": 2,
|
88 |
+
"LABEL_20": 20,
|
89 |
+
"LABEL_21": 21,
|
90 |
+
"LABEL_22": 22,
|
91 |
+
"LABEL_23": 23,
|
92 |
+
"LABEL_24": 24,
|
93 |
+
"LABEL_25": 25,
|
94 |
+
"LABEL_26": 26,
|
95 |
+
"LABEL_27": 27,
|
96 |
+
"LABEL_28": 28,
|
97 |
+
"LABEL_29": 29,
|
98 |
+
"LABEL_3": 3,
|
99 |
+
"LABEL_30": 30,
|
100 |
+
"LABEL_31": 31,
|
101 |
+
"LABEL_32": 32,
|
102 |
+
"LABEL_33": 33,
|
103 |
+
"LABEL_34": 34,
|
104 |
+
"LABEL_35": 35,
|
105 |
+
"LABEL_36": 36,
|
106 |
+
"LABEL_37": 37,
|
107 |
+
"LABEL_38": 38,
|
108 |
+
"LABEL_39": 39,
|
109 |
+
"LABEL_4": 4,
|
110 |
+
"LABEL_40": 40,
|
111 |
+
"LABEL_41": 41,
|
112 |
+
"LABEL_42": 42,
|
113 |
+
"LABEL_43": 43,
|
114 |
+
"LABEL_44": 44,
|
115 |
+
"LABEL_45": 45,
|
116 |
+
"LABEL_46": 46,
|
117 |
+
"LABEL_47": 47,
|
118 |
+
"LABEL_48": 48,
|
119 |
+
"LABEL_49": 49,
|
120 |
+
"LABEL_5": 5,
|
121 |
+
"LABEL_50": 50,
|
122 |
+
"LABEL_51": 51,
|
123 |
+
"LABEL_52": 52,
|
124 |
+
"LABEL_53": 53,
|
125 |
+
"LABEL_54": 54,
|
126 |
+
"LABEL_55": 55,
|
127 |
+
"LABEL_56": 56,
|
128 |
+
"LABEL_57": 57,
|
129 |
+
"LABEL_58": 58,
|
130 |
+
"LABEL_59": 59,
|
131 |
+
"LABEL_6": 6,
|
132 |
+
"LABEL_7": 7,
|
133 |
+
"LABEL_8": 8,
|
134 |
+
"LABEL_9": 9
|
135 |
+
},
|
136 |
+
"layer_norm_eps": 1e-07,
|
137 |
+
"max_position_embeddings": 512,
|
138 |
+
"max_relative_positions": -1,
|
139 |
+
"model_type": "deberta-v2",
|
140 |
+
"norm_rel_ebd": "layer_norm",
|
141 |
+
"num_attention_heads": 12,
|
142 |
+
"num_hidden_layers": 6,
|
143 |
+
"pad_token_id": 0,
|
144 |
+
"pooler_dropout": 0,
|
145 |
+
"pooler_hidden_act": "gelu",
|
146 |
+
"pooler_hidden_size": 768,
|
147 |
+
"pos_att_type": [
|
148 |
+
"p2c",
|
149 |
+
"c2p"
|
150 |
+
],
|
151 |
+
"position_biased_input": false,
|
152 |
+
"position_buckets": 256,
|
153 |
+
"relative_attention": true,
|
154 |
+
"share_att_key": true,
|
155 |
+
"torch_dtype": "float32",
|
156 |
+
"transformers_version": "4.33.3",
|
157 |
+
"type_vocab_size": 0,
|
158 |
+
"vocab_size": 251000
|
159 |
+
}
|
eval_results_ml.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ms-MY": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "kn-IN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "my-MM": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "af-ZA": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "tl-PH": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ml-IN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "nb-NO": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ka-GE": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "id-ID": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "zh-CN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "hu-HU": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "fa-IR": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "sw-KE": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ur-PK": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ta-IN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ja-JP": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ru-RU": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "he-IL": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ko-KR": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "en-US": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "th-TH": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "fr-FR": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "es-ES": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ca-ES": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "lv-LV": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "zh-TW": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "el-GR": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "tr-TR": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "cy-GB": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "am-ET": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "az-AZ": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "pt-PT": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "fi-FI": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "km-KH": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ar-SA": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "sl-SL": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "is-IS": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "ro-RO": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "mn-MN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "jv-ID": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "hy-AM": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "sq-AL": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "sv-SE": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "it-IT": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "nl-NL": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "bn-BD": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "pl-PL": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "da-DK": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "hi-IN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "te-IN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "de-DE": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "vi-VN": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}, "all": {"f1": 0.0009742164753290748, "accuracy": 0.029589778076664425}}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:539f50454a47ee9189f572093f35d4ea5cb24b336ed7bccc53fd7f833b7099be
|
3 |
+
size 975227114
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efccd6d9fb2fd216cdaa60514fa20cfab7187c80cb80a0334aa4d3491b76028d
|
3 |
+
size 4600
|