--- base_model: haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only library_name: transformers license: mit metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: scenario-KD-SCR-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 results: [] --- # scenario-KD-SCR-PO-CDF-EN-FROM-EN-D2_data-en-cardiff_eng_only66 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-en-cardiff_eng_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 533.0406 - Accuracy: 0.3444 - F1: 0.2711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.7391 | 100 | 631.4247 | 0.3302 | 0.2694 | | No log | 3.4783 | 200 | 605.5723 | 0.3413 | 0.2651 | | No log | 5.2174 | 300 | 589.1194 | 0.3369 | 0.2521 | | No log | 6.9565 | 400 | 580.2668 | 0.3501 | 0.2633 | | 574.1509 | 8.6957 | 500 | 571.8079 | 0.3254 | 0.2189 | | 574.1509 | 10.4348 | 600 | 564.8586 | 0.3360 | 0.2072 | | 574.1509 | 12.1739 | 700 | 559.2232 | 0.3417 | 0.2567 | | 574.1509 | 13.9130 | 800 | 552.7770 | 0.3391 | 0.2289 | | 574.1509 | 15.6522 | 900 | 549.6864 | 0.3333 | 0.2295 | | 468.9151 | 17.3913 | 1000 | 545.1831 | 0.3338 | 0.2429 | | 468.9151 | 19.1304 | 1100 | 541.3506 | 0.3466 | 0.2794 | | 468.9151 | 20.8696 | 1200 | 538.9130 | 0.3355 | 0.2612 | | 468.9151 | 22.6087 | 1300 | 537.2876 | 0.3470 | 0.2807 | | 468.9151 | 24.3478 | 1400 | 535.7286 | 0.3426 | 0.2346 | | 433.9469 | 26.0870 | 1500 | 533.7326 | 0.3492 | 0.2730 | | 433.9469 | 27.8261 | 1600 | 533.2730 | 0.3338 | 0.2553 | | 433.9469 | 29.5652 | 1700 | 533.0406 | 0.3444 | 0.2711 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1