--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.8577887926141738 - name: F1 type: f1 value: 0.8335554213502777 --- # scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.9178 - Accuracy: 0.8578 - F1: 0.8336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.5269 | 0.27 | 5000 | 0.6875 | 0.8358 | 0.7817 | | 0.3683 | 0.53 | 10000 | 0.6940 | 0.8489 | 0.8131 | | 0.3073 | 0.8 | 15000 | 0.6710 | 0.8545 | 0.8198 | | 0.2189 | 1.07 | 20000 | 0.7507 | 0.8539 | 0.8299 | | 0.2276 | 1.34 | 25000 | 0.7456 | 0.8582 | 0.8347 | | 0.1939 | 1.6 | 30000 | 0.8157 | 0.8562 | 0.8342 | | 0.1852 | 1.87 | 35000 | 0.7920 | 0.8548 | 0.8269 | | 0.1302 | 2.14 | 40000 | 0.8574 | 0.8559 | 0.8329 | | 0.1273 | 2.41 | 45000 | 0.8945 | 0.8594 | 0.8330 | | 0.1163 | 2.67 | 50000 | 0.9178 | 0.8578 | 0.8336 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3