haryoaw commited on
Commit
a6319fb
1 Parent(s): 20cd75c

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +187 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/mdeberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-MDBT-TCR_data-en-massive_all_1_1
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: massive
19
+ type: massive
20
+ config: all_1.1
21
+ split: validation
22
+ args: all_1.1
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.7227317882391521
27
+ - name: F1
28
+ type: f1
29
+ value: 0.6670992426180887
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # scenario-MDBT-TCR_data-en-massive_all_1_1
36
+
37
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 2.6914
40
+ - Accuracy: 0.7227
41
+ - F1: 0.6671
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 32
62
+ - eval_batch_size: 64
63
+ - seed: 66
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 30
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
72
+ | No log | 0.28 | 100 | 3.1171 | 0.2852 | 0.0691 |
73
+ | No log | 0.56 | 200 | 2.3001 | 0.4341 | 0.1961 |
74
+ | No log | 0.83 | 300 | 1.7494 | 0.5860 | 0.3648 |
75
+ | No log | 1.11 | 400 | 1.5526 | 0.6387 | 0.4610 |
76
+ | 1.995 | 1.39 | 500 | 1.5531 | 0.6500 | 0.4780 |
77
+ | 1.995 | 1.67 | 600 | 1.4151 | 0.6671 | 0.5333 |
78
+ | 1.995 | 1.94 | 700 | 1.2962 | 0.6946 | 0.5785 |
79
+ | 1.995 | 2.22 | 800 | 1.3865 | 0.6875 | 0.5773 |
80
+ | 1.995 | 2.5 | 900 | 1.2868 | 0.7121 | 0.6082 |
81
+ | 0.6196 | 2.78 | 1000 | 1.3864 | 0.6981 | 0.6033 |
82
+ | 0.6196 | 3.06 | 1100 | 1.4551 | 0.6925 | 0.6229 |
83
+ | 0.6196 | 3.33 | 1200 | 1.4319 | 0.7092 | 0.6216 |
84
+ | 0.6196 | 3.61 | 1300 | 1.4668 | 0.7035 | 0.6309 |
85
+ | 0.6196 | 3.89 | 1400 | 1.4418 | 0.7056 | 0.6303 |
86
+ | 0.347 | 4.17 | 1500 | 1.4875 | 0.7108 | 0.6562 |
87
+ | 0.347 | 4.44 | 1600 | 1.4943 | 0.7144 | 0.6564 |
88
+ | 0.347 | 4.72 | 1700 | 1.5156 | 0.7122 | 0.6407 |
89
+ | 0.347 | 5.0 | 1800 | 1.5642 | 0.7013 | 0.6506 |
90
+ | 0.347 | 5.28 | 1900 | 1.5904 | 0.7112 | 0.6440 |
91
+ | 0.2195 | 5.56 | 2000 | 1.5237 | 0.7239 | 0.6596 |
92
+ | 0.2195 | 5.83 | 2100 | 1.6728 | 0.7064 | 0.6285 |
93
+ | 0.2195 | 6.11 | 2200 | 1.6606 | 0.7026 | 0.6457 |
94
+ | 0.2195 | 6.39 | 2300 | 1.6961 | 0.7117 | 0.6461 |
95
+ | 0.2195 | 6.67 | 2400 | 1.7144 | 0.7088 | 0.6451 |
96
+ | 0.1729 | 6.94 | 2500 | 1.6841 | 0.7148 | 0.6585 |
97
+ | 0.1729 | 7.22 | 2600 | 1.8309 | 0.7057 | 0.6420 |
98
+ | 0.1729 | 7.5 | 2700 | 1.7698 | 0.7197 | 0.6580 |
99
+ | 0.1729 | 7.78 | 2800 | 1.9600 | 0.7069 | 0.6430 |
100
+ | 0.1729 | 8.06 | 2900 | 2.0215 | 0.6836 | 0.6281 |
101
+ | 0.113 | 8.33 | 3000 | 1.8546 | 0.7191 | 0.6600 |
102
+ | 0.113 | 8.61 | 3100 | 1.9063 | 0.7190 | 0.6593 |
103
+ | 0.113 | 8.89 | 3200 | 1.7990 | 0.7263 | 0.6578 |
104
+ | 0.113 | 9.17 | 3300 | 1.8465 | 0.7215 | 0.6613 |
105
+ | 0.113 | 9.44 | 3400 | 1.9787 | 0.7133 | 0.6522 |
106
+ | 0.0826 | 9.72 | 3500 | 1.9424 | 0.7168 | 0.6593 |
107
+ | 0.0826 | 10.0 | 3600 | 2.1079 | 0.6973 | 0.6399 |
108
+ | 0.0826 | 10.28 | 3700 | 2.0101 | 0.7081 | 0.6510 |
109
+ | 0.0826 | 10.56 | 3800 | 2.1830 | 0.6990 | 0.6307 |
110
+ | 0.0826 | 10.83 | 3900 | 2.1300 | 0.7112 | 0.6541 |
111
+ | 0.066 | 11.11 | 4000 | 2.0432 | 0.7118 | 0.6480 |
112
+ | 0.066 | 11.39 | 4100 | 2.2643 | 0.7005 | 0.6312 |
113
+ | 0.066 | 11.67 | 4200 | 2.3124 | 0.7056 | 0.6504 |
114
+ | 0.066 | 11.94 | 4300 | 2.1704 | 0.7169 | 0.6606 |
115
+ | 0.066 | 12.22 | 4400 | 2.1669 | 0.7244 | 0.6668 |
116
+ | 0.0465 | 12.5 | 4500 | 2.0924 | 0.7187 | 0.6566 |
117
+ | 0.0465 | 12.78 | 4600 | 2.1401 | 0.7192 | 0.6520 |
118
+ | 0.0465 | 13.06 | 4700 | 2.1376 | 0.7233 | 0.6552 |
119
+ | 0.0465 | 13.33 | 4800 | 2.1814 | 0.7246 | 0.6625 |
120
+ | 0.0465 | 13.61 | 4900 | 2.1595 | 0.7232 | 0.6618 |
121
+ | 0.0321 | 13.89 | 5000 | 2.2037 | 0.7299 | 0.6757 |
122
+ | 0.0321 | 14.17 | 5100 | 2.2631 | 0.7220 | 0.6736 |
123
+ | 0.0321 | 14.44 | 5200 | 2.3036 | 0.7178 | 0.6608 |
124
+ | 0.0321 | 14.72 | 5300 | 2.4098 | 0.7164 | 0.6625 |
125
+ | 0.0321 | 15.0 | 5400 | 2.3241 | 0.7177 | 0.6615 |
126
+ | 0.0238 | 15.28 | 5500 | 2.4564 | 0.7105 | 0.6606 |
127
+ | 0.0238 | 15.56 | 5600 | 2.3782 | 0.7208 | 0.6666 |
128
+ | 0.0238 | 15.83 | 5700 | 2.3832 | 0.7189 | 0.6591 |
129
+ | 0.0238 | 16.11 | 5800 | 2.5115 | 0.7075 | 0.6452 |
130
+ | 0.0238 | 16.39 | 5900 | 2.4870 | 0.7112 | 0.6640 |
131
+ | 0.0208 | 16.67 | 6000 | 2.5268 | 0.7145 | 0.6636 |
132
+ | 0.0208 | 16.94 | 6100 | 2.5253 | 0.7134 | 0.6641 |
133
+ | 0.0208 | 17.22 | 6200 | 2.4308 | 0.7233 | 0.6696 |
134
+ | 0.0208 | 17.5 | 6300 | 2.4632 | 0.7177 | 0.6668 |
135
+ | 0.0208 | 17.78 | 6400 | 2.3885 | 0.7253 | 0.6665 |
136
+ | 0.0169 | 18.06 | 6500 | 2.4380 | 0.7187 | 0.6631 |
137
+ | 0.0169 | 18.33 | 6600 | 2.4620 | 0.7163 | 0.6681 |
138
+ | 0.0169 | 18.61 | 6700 | 2.4921 | 0.7195 | 0.6646 |
139
+ | 0.0169 | 18.89 | 6800 | 2.5746 | 0.7087 | 0.6474 |
140
+ | 0.0169 | 19.17 | 6900 | 2.5031 | 0.7201 | 0.6645 |
141
+ | 0.0139 | 19.44 | 7000 | 2.5396 | 0.7183 | 0.6579 |
142
+ | 0.0139 | 19.72 | 7100 | 2.5645 | 0.7191 | 0.6635 |
143
+ | 0.0139 | 20.0 | 7200 | 2.5458 | 0.7184 | 0.6614 |
144
+ | 0.0139 | 20.28 | 7300 | 2.5119 | 0.7210 | 0.6663 |
145
+ | 0.0139 | 20.56 | 7400 | 2.5254 | 0.7257 | 0.6752 |
146
+ | 0.0079 | 20.83 | 7500 | 2.5765 | 0.7198 | 0.6709 |
147
+ | 0.0079 | 21.11 | 7600 | 2.5612 | 0.7203 | 0.6703 |
148
+ | 0.0079 | 21.39 | 7700 | 2.5182 | 0.7278 | 0.6719 |
149
+ | 0.0079 | 21.67 | 7800 | 2.5369 | 0.7247 | 0.6711 |
150
+ | 0.0079 | 21.94 | 7900 | 2.6488 | 0.7208 | 0.6681 |
151
+ | 0.0045 | 22.22 | 8000 | 2.6237 | 0.7245 | 0.6726 |
152
+ | 0.0045 | 22.5 | 8100 | 2.5783 | 0.7243 | 0.6722 |
153
+ | 0.0045 | 22.78 | 8200 | 2.6651 | 0.7209 | 0.6738 |
154
+ | 0.0045 | 23.06 | 8300 | 2.5498 | 0.7253 | 0.6717 |
155
+ | 0.0045 | 23.33 | 8400 | 2.6436 | 0.7233 | 0.6687 |
156
+ | 0.0056 | 23.61 | 8500 | 2.6572 | 0.7245 | 0.6710 |
157
+ | 0.0056 | 23.89 | 8600 | 2.8399 | 0.7147 | 0.6647 |
158
+ | 0.0056 | 24.17 | 8700 | 2.7875 | 0.7161 | 0.6682 |
159
+ | 0.0056 | 24.44 | 8800 | 2.7095 | 0.7195 | 0.6669 |
160
+ | 0.0056 | 24.72 | 8900 | 2.6328 | 0.7248 | 0.6688 |
161
+ | 0.0056 | 25.0 | 9000 | 2.6524 | 0.7246 | 0.6693 |
162
+ | 0.0056 | 25.28 | 9100 | 2.6860 | 0.7219 | 0.6685 |
163
+ | 0.0056 | 25.56 | 9200 | 2.7291 | 0.7194 | 0.6671 |
164
+ | 0.0056 | 25.83 | 9300 | 2.7558 | 0.7164 | 0.6625 |
165
+ | 0.0056 | 26.11 | 9400 | 2.7021 | 0.7185 | 0.6636 |
166
+ | 0.0023 | 26.39 | 9500 | 2.7087 | 0.7200 | 0.6650 |
167
+ | 0.0023 | 26.67 | 9600 | 2.7187 | 0.7199 | 0.6688 |
168
+ | 0.0023 | 26.94 | 9700 | 2.6568 | 0.7241 | 0.6720 |
169
+ | 0.0023 | 27.22 | 9800 | 2.6873 | 0.7213 | 0.6675 |
170
+ | 0.0023 | 27.5 | 9900 | 2.7043 | 0.7205 | 0.6667 |
171
+ | 0.0024 | 27.78 | 10000 | 2.7342 | 0.7178 | 0.6662 |
172
+ | 0.0024 | 28.06 | 10100 | 2.7089 | 0.7202 | 0.6673 |
173
+ | 0.0024 | 28.33 | 10200 | 2.7063 | 0.7207 | 0.6674 |
174
+ | 0.0024 | 28.61 | 10300 | 2.7048 | 0.7208 | 0.6671 |
175
+ | 0.0024 | 28.89 | 10400 | 2.7010 | 0.7214 | 0.6674 |
176
+ | 0.0015 | 29.17 | 10500 | 2.6951 | 0.7226 | 0.6670 |
177
+ | 0.0015 | 29.44 | 10600 | 2.6964 | 0.7223 | 0.6669 |
178
+ | 0.0015 | 29.72 | 10700 | 2.6925 | 0.7225 | 0.6671 |
179
+ | 0.0015 | 30.0 | 10800 | 2.6914 | 0.7227 | 0.6671 |
180
+
181
+
182
+ ### Framework versions
183
+
184
+ - Transformers 4.33.3
185
+ - Pytorch 2.1.1+cu121
186
+ - Datasets 2.14.5
187
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 12,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ru-RU": {"f1": 0.010316925076793538, "accuracy": 0.04942837928715535}, "cy-GB": {"f1": 0.009031079552289031, "accuracy": 0.03597848016139879}, "en-US": {"f1": 0.004128358654351474, "accuracy": 0.021856086079354405}, "tl-PH": {"f1": 0.007033744185653525, "accuracy": 0.04909213180901143}, "bn-BD": {"f1": 0.01064684437896273, "accuracy": 0.04572965702757229}, "pl-PL": {"f1": 0.010264168909410978, "accuracy": 0.05917955615332885}, "fa-IR": {"f1": 0.009904069834589222, "accuracy": 0.05413584398117014}, "ro-RO": {"f1": 0.0082767370311412, "accuracy": 0.04942837928715535}, "kn-IN": {"f1": 0.011624510132884028, "accuracy": 0.04707464694014795}, "es-ES": {"f1": 0.006931920058950065, "accuracy": 0.04942837928715535}, "fi-FI": {"f1": 0.008348889025429634, "accuracy": 0.05279085406859448}, "el-GR": {"f1": 0.013950351638227847, "accuracy": 0.05211835911230666}, "ar-SA": {"f1": 0.010864946698961918, "accuracy": 0.050773369199731}, "ca-ES": {"f1": 0.006624775227252109, "accuracy": 0.05346334902488231}, "sl-SL": {"f1": 0.00669486702190452, "accuracy": 0.04942837928715535}, "hu-HU": {"f1": 0.007341933853776979, "accuracy": 0.05211835911230666}, "sq-AL": {"f1": 0.006698035828942186, "accuracy": 0.05379959650302623}, "pt-PT": {"f1": 0.009876686308811096, "accuracy": 0.05279085406859448}, "hi-IN": {"f1": 0.013358473858025266, "accuracy": 0.05615332885003362}, "am-ET": {"f1": 0.011571610890102892, "accuracy": 0.04909213180901143}, "ml-IN": {"f1": 0.009399478462437673, "accuracy": 0.04741089441829186}, "jv-ID": {"f1": 0.007928378619948176, "accuracy": 0.05211835911230666}, "tr-TR": {"f1": 0.007740517852818087, "accuracy": 0.05178211163416274}, "vi-VN": {"f1": 0.011817855833325643, "accuracy": 0.04808338937457969}, "he-IL": {"f1": 0.00956928578215271, "accuracy": 0.05245460659045057}, "my-MM": {"f1": 0.010786182254414464, "accuracy": 0.06186953597848016}, "mn-MN": {"f1": 0.010524399932849935, "accuracy": 0.04472091459314055}, "ja-JP": {"f1": 0.011610784087114788, "accuracy": 0.0652320107599193}, "is-IS": {"f1": 0.008242528109904796, "accuracy": 0.05917955615332885}, "id-ID": {"f1": 0.013556971091917974, "accuracy": 0.04236718224613315}, "sv-SE": {"f1": 0.008868076660263171, "accuracy": 0.04404841963685272}, "nb-NO": {"f1": 0.009948873549432316, "accuracy": 0.05850706119704102}, "da-DK": {"f1": 0.006963028671915196, "accuracy": 0.04640215198386012}, "te-IN": {"f1": 0.008827314588716275, "accuracy": 0.05413584398117014}, "ta-IN": {"f1": 0.010181200766674517, "accuracy": 0.0531271015467384}, "de-DE": {"f1": 0.009820927979154084, "accuracy": 0.05682582380632145}, "ms-MY": {"f1": 0.008695116790145493, "accuracy": 0.04976462676529926}, "az-AZ": {"f1": 0.006846897205354794, "accuracy": 0.04572965702757229}, "km-KH": {"f1": 0.012659606303168983, "accuracy": 0.07195696032279758}, "hy-AM": {"f1": 0.013338651577045071, "accuracy": 0.05716207128446537}, "fr-FR": {"f1": 0.005880360132106054, "accuracy": 0.05648957632817754}, "lv-LV": {"f1": 0.006623425374335874, "accuracy": 0.06220578345662407}, "ko-KR": {"f1": 0.008989616861369655, "accuracy": 0.0484196368527236}, "sw-KE": {"f1": 0.011598658779704799, "accuracy": 0.05514458641560188}, "ka-GE": {"f1": 0.010113270489478075, "accuracy": 0.04270342972427707}, "zh-TW": {"f1": 0.012945789025900394, "accuracy": 0.03665097511768662}, "ur-PK": {"f1": 0.010250507258275702, "accuracy": 0.05749831876260928}, "nl-NL": {"f1": 0.010128839057233111, "accuracy": 0.04707464694014795}, "it-IT": {"f1": 0.007618073321736792, "accuracy": 0.0531271015467384}, "th-TH": {"f1": 0.008082391982246246, "accuracy": 0.04404841963685272}, "zh-CN": {"f1": 0.009933305466830786, "accuracy": 0.03093476798924008}, "af-ZA": {"f1": 0.007387175615153436, "accuracy": 0.03799596503026227}, "all": {"f1": 0.009897739649780104, "accuracy": 0.05036599244736434}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a490c74c8fa60f3d998b40cb3d0965de9486ccc82f24e737ec749868531382a
3
+ size 1115491954
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca2e7e08d9378a8f8f565ebecbbcb3c08196c1868f81b9348b03cd1b51aed05d
3
+ size 4600