haryoaw commited on
Commit
f3e9216
1 Parent(s): 0869525

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +113 -113
  2. eval_results_ml.json +1 -1
  3. pytorch_model.bin +1 -1
  4. training_args.bin +2 -2
README.md CHANGED
@@ -23,10 +23,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.7227317882391521
27
  - name: F1
28
  type: f1
29
- value: 0.6670992426180887
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 2.6914
40
- - Accuracy: 0.7227
41
- - F1: 0.6671
42
 
43
  ## Model description
44
 
@@ -69,114 +69,114 @@ The following hyperparameters were used during training:
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
72
- | No log | 0.28 | 100 | 3.1171 | 0.2852 | 0.0691 |
73
- | No log | 0.56 | 200 | 2.3001 | 0.4341 | 0.1961 |
74
- | No log | 0.83 | 300 | 1.7494 | 0.5860 | 0.3648 |
75
- | No log | 1.11 | 400 | 1.5526 | 0.6387 | 0.4610 |
76
- | 1.995 | 1.39 | 500 | 1.5531 | 0.6500 | 0.4780 |
77
- | 1.995 | 1.67 | 600 | 1.4151 | 0.6671 | 0.5333 |
78
- | 1.995 | 1.94 | 700 | 1.2962 | 0.6946 | 0.5785 |
79
- | 1.995 | 2.22 | 800 | 1.3865 | 0.6875 | 0.5773 |
80
- | 1.995 | 2.5 | 900 | 1.2868 | 0.7121 | 0.6082 |
81
- | 0.6196 | 2.78 | 1000 | 1.3864 | 0.6981 | 0.6033 |
82
- | 0.6196 | 3.06 | 1100 | 1.4551 | 0.6925 | 0.6229 |
83
- | 0.6196 | 3.33 | 1200 | 1.4319 | 0.7092 | 0.6216 |
84
- | 0.6196 | 3.61 | 1300 | 1.4668 | 0.7035 | 0.6309 |
85
- | 0.6196 | 3.89 | 1400 | 1.4418 | 0.7056 | 0.6303 |
86
- | 0.347 | 4.17 | 1500 | 1.4875 | 0.7108 | 0.6562 |
87
- | 0.347 | 4.44 | 1600 | 1.4943 | 0.7144 | 0.6564 |
88
- | 0.347 | 4.72 | 1700 | 1.5156 | 0.7122 | 0.6407 |
89
- | 0.347 | 5.0 | 1800 | 1.5642 | 0.7013 | 0.6506 |
90
- | 0.347 | 5.28 | 1900 | 1.5904 | 0.7112 | 0.6440 |
91
- | 0.2195 | 5.56 | 2000 | 1.5237 | 0.7239 | 0.6596 |
92
- | 0.2195 | 5.83 | 2100 | 1.6728 | 0.7064 | 0.6285 |
93
- | 0.2195 | 6.11 | 2200 | 1.6606 | 0.7026 | 0.6457 |
94
- | 0.2195 | 6.39 | 2300 | 1.6961 | 0.7117 | 0.6461 |
95
- | 0.2195 | 6.67 | 2400 | 1.7144 | 0.7088 | 0.6451 |
96
- | 0.1729 | 6.94 | 2500 | 1.6841 | 0.7148 | 0.6585 |
97
- | 0.1729 | 7.22 | 2600 | 1.8309 | 0.7057 | 0.6420 |
98
- | 0.1729 | 7.5 | 2700 | 1.7698 | 0.7197 | 0.6580 |
99
- | 0.1729 | 7.78 | 2800 | 1.9600 | 0.7069 | 0.6430 |
100
- | 0.1729 | 8.06 | 2900 | 2.0215 | 0.6836 | 0.6281 |
101
- | 0.113 | 8.33 | 3000 | 1.8546 | 0.7191 | 0.6600 |
102
- | 0.113 | 8.61 | 3100 | 1.9063 | 0.7190 | 0.6593 |
103
- | 0.113 | 8.89 | 3200 | 1.7990 | 0.7263 | 0.6578 |
104
- | 0.113 | 9.17 | 3300 | 1.8465 | 0.7215 | 0.6613 |
105
- | 0.113 | 9.44 | 3400 | 1.9787 | 0.7133 | 0.6522 |
106
- | 0.0826 | 9.72 | 3500 | 1.9424 | 0.7168 | 0.6593 |
107
- | 0.0826 | 10.0 | 3600 | 2.1079 | 0.6973 | 0.6399 |
108
- | 0.0826 | 10.28 | 3700 | 2.0101 | 0.7081 | 0.6510 |
109
- | 0.0826 | 10.56 | 3800 | 2.1830 | 0.6990 | 0.6307 |
110
- | 0.0826 | 10.83 | 3900 | 2.1300 | 0.7112 | 0.6541 |
111
- | 0.066 | 11.11 | 4000 | 2.0432 | 0.7118 | 0.6480 |
112
- | 0.066 | 11.39 | 4100 | 2.2643 | 0.7005 | 0.6312 |
113
- | 0.066 | 11.67 | 4200 | 2.3124 | 0.7056 | 0.6504 |
114
- | 0.066 | 11.94 | 4300 | 2.1704 | 0.7169 | 0.6606 |
115
- | 0.066 | 12.22 | 4400 | 2.1669 | 0.7244 | 0.6668 |
116
- | 0.0465 | 12.5 | 4500 | 2.0924 | 0.7187 | 0.6566 |
117
- | 0.0465 | 12.78 | 4600 | 2.1401 | 0.7192 | 0.6520 |
118
- | 0.0465 | 13.06 | 4700 | 2.1376 | 0.7233 | 0.6552 |
119
- | 0.0465 | 13.33 | 4800 | 2.1814 | 0.7246 | 0.6625 |
120
- | 0.0465 | 13.61 | 4900 | 2.1595 | 0.7232 | 0.6618 |
121
- | 0.0321 | 13.89 | 5000 | 2.2037 | 0.7299 | 0.6757 |
122
- | 0.0321 | 14.17 | 5100 | 2.2631 | 0.7220 | 0.6736 |
123
- | 0.0321 | 14.44 | 5200 | 2.3036 | 0.7178 | 0.6608 |
124
- | 0.0321 | 14.72 | 5300 | 2.4098 | 0.7164 | 0.6625 |
125
- | 0.0321 | 15.0 | 5400 | 2.3241 | 0.7177 | 0.6615 |
126
- | 0.0238 | 15.28 | 5500 | 2.4564 | 0.7105 | 0.6606 |
127
- | 0.0238 | 15.56 | 5600 | 2.3782 | 0.7208 | 0.6666 |
128
- | 0.0238 | 15.83 | 5700 | 2.3832 | 0.7189 | 0.6591 |
129
- | 0.0238 | 16.11 | 5800 | 2.5115 | 0.7075 | 0.6452 |
130
- | 0.0238 | 16.39 | 5900 | 2.4870 | 0.7112 | 0.6640 |
131
- | 0.0208 | 16.67 | 6000 | 2.5268 | 0.7145 | 0.6636 |
132
- | 0.0208 | 16.94 | 6100 | 2.5253 | 0.7134 | 0.6641 |
133
- | 0.0208 | 17.22 | 6200 | 2.4308 | 0.7233 | 0.6696 |
134
- | 0.0208 | 17.5 | 6300 | 2.4632 | 0.7177 | 0.6668 |
135
- | 0.0208 | 17.78 | 6400 | 2.3885 | 0.7253 | 0.6665 |
136
- | 0.0169 | 18.06 | 6500 | 2.4380 | 0.7187 | 0.6631 |
137
- | 0.0169 | 18.33 | 6600 | 2.4620 | 0.7163 | 0.6681 |
138
- | 0.0169 | 18.61 | 6700 | 2.4921 | 0.7195 | 0.6646 |
139
- | 0.0169 | 18.89 | 6800 | 2.5746 | 0.7087 | 0.6474 |
140
- | 0.0169 | 19.17 | 6900 | 2.5031 | 0.7201 | 0.6645 |
141
- | 0.0139 | 19.44 | 7000 | 2.5396 | 0.7183 | 0.6579 |
142
- | 0.0139 | 19.72 | 7100 | 2.5645 | 0.7191 | 0.6635 |
143
- | 0.0139 | 20.0 | 7200 | 2.5458 | 0.7184 | 0.6614 |
144
- | 0.0139 | 20.28 | 7300 | 2.5119 | 0.7210 | 0.6663 |
145
- | 0.0139 | 20.56 | 7400 | 2.5254 | 0.7257 | 0.6752 |
146
- | 0.0079 | 20.83 | 7500 | 2.5765 | 0.7198 | 0.6709 |
147
- | 0.0079 | 21.11 | 7600 | 2.5612 | 0.7203 | 0.6703 |
148
- | 0.0079 | 21.39 | 7700 | 2.5182 | 0.7278 | 0.6719 |
149
- | 0.0079 | 21.67 | 7800 | 2.5369 | 0.7247 | 0.6711 |
150
- | 0.0079 | 21.94 | 7900 | 2.6488 | 0.7208 | 0.6681 |
151
- | 0.0045 | 22.22 | 8000 | 2.6237 | 0.7245 | 0.6726 |
152
- | 0.0045 | 22.5 | 8100 | 2.5783 | 0.7243 | 0.6722 |
153
- | 0.0045 | 22.78 | 8200 | 2.6651 | 0.7209 | 0.6738 |
154
- | 0.0045 | 23.06 | 8300 | 2.5498 | 0.7253 | 0.6717 |
155
- | 0.0045 | 23.33 | 8400 | 2.6436 | 0.7233 | 0.6687 |
156
- | 0.0056 | 23.61 | 8500 | 2.6572 | 0.7245 | 0.6710 |
157
- | 0.0056 | 23.89 | 8600 | 2.8399 | 0.7147 | 0.6647 |
158
- | 0.0056 | 24.17 | 8700 | 2.7875 | 0.7161 | 0.6682 |
159
- | 0.0056 | 24.44 | 8800 | 2.7095 | 0.7195 | 0.6669 |
160
- | 0.0056 | 24.72 | 8900 | 2.6328 | 0.7248 | 0.6688 |
161
- | 0.0056 | 25.0 | 9000 | 2.6524 | 0.7246 | 0.6693 |
162
- | 0.0056 | 25.28 | 9100 | 2.6860 | 0.7219 | 0.6685 |
163
- | 0.0056 | 25.56 | 9200 | 2.7291 | 0.7194 | 0.6671 |
164
- | 0.0056 | 25.83 | 9300 | 2.7558 | 0.7164 | 0.6625 |
165
- | 0.0056 | 26.11 | 9400 | 2.7021 | 0.7185 | 0.6636 |
166
- | 0.0023 | 26.39 | 9500 | 2.7087 | 0.7200 | 0.6650 |
167
- | 0.0023 | 26.67 | 9600 | 2.7187 | 0.7199 | 0.6688 |
168
- | 0.0023 | 26.94 | 9700 | 2.6568 | 0.7241 | 0.6720 |
169
- | 0.0023 | 27.22 | 9800 | 2.6873 | 0.7213 | 0.6675 |
170
- | 0.0023 | 27.5 | 9900 | 2.7043 | 0.7205 | 0.6667 |
171
- | 0.0024 | 27.78 | 10000 | 2.7342 | 0.7178 | 0.6662 |
172
- | 0.0024 | 28.06 | 10100 | 2.7089 | 0.7202 | 0.6673 |
173
- | 0.0024 | 28.33 | 10200 | 2.7063 | 0.7207 | 0.6674 |
174
- | 0.0024 | 28.61 | 10300 | 2.7048 | 0.7208 | 0.6671 |
175
- | 0.0024 | 28.89 | 10400 | 2.7010 | 0.7214 | 0.6674 |
176
- | 0.0015 | 29.17 | 10500 | 2.6951 | 0.7226 | 0.6670 |
177
- | 0.0015 | 29.44 | 10600 | 2.6964 | 0.7223 | 0.6669 |
178
- | 0.0015 | 29.72 | 10700 | 2.6925 | 0.7225 | 0.6671 |
179
- | 0.0015 | 30.0 | 10800 | 2.6914 | 0.7227 | 0.6671 |
180
 
181
 
182
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.7360994569987366
27
  - name: F1
28
  type: f1
29
+ value: 0.688120673898054
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 2.5243
40
+ - Accuracy: 0.7361
41
+ - F1: 0.6881
42
 
43
  ## Model description
44
 
 
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
72
+ | No log | 0.28 | 100 | 2.9524 | 0.3055 | 0.0759 |
73
+ | No log | 0.56 | 200 | 2.0666 | 0.4969 | 0.2470 |
74
+ | No log | 0.83 | 300 | 1.6852 | 0.5878 | 0.3626 |
75
+ | No log | 1.11 | 400 | 1.4751 | 0.6376 | 0.4564 |
76
+ | 1.9292 | 1.39 | 500 | 1.4633 | 0.6522 | 0.4887 |
77
+ | 1.9292 | 1.67 | 600 | 1.4477 | 0.6604 | 0.5016 |
78
+ | 1.9292 | 1.94 | 700 | 1.3844 | 0.6758 | 0.5746 |
79
+ | 1.9292 | 2.22 | 800 | 1.3272 | 0.6937 | 0.5857 |
80
+ | 1.9292 | 2.5 | 900 | 1.2445 | 0.7178 | 0.6192 |
81
+ | 0.6258 | 2.78 | 1000 | 1.3348 | 0.7128 | 0.6198 |
82
+ | 0.6258 | 3.06 | 1100 | 1.5354 | 0.6734 | 0.6006 |
83
+ | 0.6258 | 3.33 | 1200 | 1.4149 | 0.7001 | 0.6258 |
84
+ | 0.6258 | 3.61 | 1300 | 1.4474 | 0.7032 | 0.6405 |
85
+ | 0.6258 | 3.89 | 1400 | 1.5031 | 0.7054 | 0.6395 |
86
+ | 0.3592 | 4.17 | 1500 | 1.3733 | 0.7225 | 0.6669 |
87
+ | 0.3592 | 4.44 | 1600 | 1.3757 | 0.7317 | 0.6555 |
88
+ | 0.3592 | 4.72 | 1700 | 1.4694 | 0.7134 | 0.6539 |
89
+ | 0.3592 | 5.0 | 1800 | 1.4733 | 0.7077 | 0.6461 |
90
+ | 0.3592 | 5.28 | 1900 | 1.5077 | 0.7232 | 0.6654 |
91
+ | 0.2316 | 5.56 | 2000 | 1.6396 | 0.7069 | 0.6482 |
92
+ | 0.2316 | 5.83 | 2100 | 1.5588 | 0.7178 | 0.6599 |
93
+ | 0.2316 | 6.11 | 2200 | 1.5611 | 0.7206 | 0.6507 |
94
+ | 0.2316 | 6.39 | 2300 | 1.7029 | 0.7155 | 0.6597 |
95
+ | 0.2316 | 6.67 | 2400 | 1.7865 | 0.7048 | 0.6407 |
96
+ | 0.1763 | 6.94 | 2500 | 1.7791 | 0.7065 | 0.6555 |
97
+ | 0.1763 | 7.22 | 2600 | 1.8013 | 0.7176 | 0.6572 |
98
+ | 0.1763 | 7.5 | 2700 | 1.8034 | 0.7149 | 0.6578 |
99
+ | 0.1763 | 7.78 | 2800 | 2.0082 | 0.6872 | 0.6234 |
100
+ | 0.1763 | 8.06 | 2900 | 2.0108 | 0.7011 | 0.6388 |
101
+ | 0.1136 | 8.33 | 3000 | 2.0779 | 0.6997 | 0.6513 |
102
+ | 0.1136 | 8.61 | 3100 | 1.9805 | 0.7122 | 0.6555 |
103
+ | 0.1136 | 8.89 | 3200 | 2.1014 | 0.7010 | 0.6485 |
104
+ | 0.1136 | 9.17 | 3300 | 1.9710 | 0.7133 | 0.6537 |
105
+ | 0.1136 | 9.44 | 3400 | 1.9677 | 0.7152 | 0.6564 |
106
+ | 0.0964 | 9.72 | 3500 | 2.0902 | 0.7079 | 0.6535 |
107
+ | 0.0964 | 10.0 | 3600 | 2.0776 | 0.7083 | 0.6529 |
108
+ | 0.0964 | 10.28 | 3700 | 2.0649 | 0.7191 | 0.6647 |
109
+ | 0.0964 | 10.56 | 3800 | 2.0690 | 0.7152 | 0.6551 |
110
+ | 0.0964 | 10.83 | 3900 | 2.1585 | 0.7055 | 0.6513 |
111
+ | 0.0721 | 11.11 | 4000 | 2.0158 | 0.7236 | 0.6660 |
112
+ | 0.0721 | 11.39 | 4100 | 2.1559 | 0.7120 | 0.6616 |
113
+ | 0.0721 | 11.67 | 4200 | 2.0517 | 0.7253 | 0.6694 |
114
+ | 0.0721 | 11.94 | 4300 | 2.1721 | 0.7219 | 0.6662 |
115
+ | 0.0721 | 12.22 | 4400 | 2.2949 | 0.7079 | 0.6680 |
116
+ | 0.0448 | 12.5 | 4500 | 2.1676 | 0.7186 | 0.6685 |
117
+ | 0.0448 | 12.78 | 4600 | 2.0882 | 0.7227 | 0.6636 |
118
+ | 0.0448 | 13.06 | 4700 | 2.0149 | 0.7335 | 0.6736 |
119
+ | 0.0448 | 13.33 | 4800 | 2.2128 | 0.7243 | 0.6667 |
120
+ | 0.0448 | 13.61 | 4900 | 2.2664 | 0.7200 | 0.6577 |
121
+ | 0.0371 | 13.89 | 5000 | 2.3489 | 0.7100 | 0.6656 |
122
+ | 0.0371 | 14.17 | 5100 | 2.3454 | 0.7087 | 0.6531 |
123
+ | 0.0371 | 14.44 | 5200 | 2.2062 | 0.7296 | 0.6767 |
124
+ | 0.0371 | 14.72 | 5300 | 2.4544 | 0.7101 | 0.6661 |
125
+ | 0.0371 | 15.0 | 5400 | 2.2581 | 0.7275 | 0.6683 |
126
+ | 0.0227 | 15.28 | 5500 | 2.2904 | 0.7242 | 0.6697 |
127
+ | 0.0227 | 15.56 | 5600 | 2.3484 | 0.7152 | 0.6495 |
128
+ | 0.0227 | 15.83 | 5700 | 2.4505 | 0.7126 | 0.6599 |
129
+ | 0.0227 | 16.11 | 5800 | 2.2985 | 0.7236 | 0.6673 |
130
+ | 0.0227 | 16.39 | 5900 | 2.3929 | 0.7245 | 0.6751 |
131
+ | 0.022 | 16.67 | 6000 | 2.4606 | 0.7200 | 0.6643 |
132
+ | 0.022 | 16.94 | 6100 | 2.3481 | 0.7276 | 0.6689 |
133
+ | 0.022 | 17.22 | 6200 | 2.3302 | 0.7273 | 0.6724 |
134
+ | 0.022 | 17.5 | 6300 | 2.3566 | 0.7292 | 0.6787 |
135
+ | 0.022 | 17.78 | 6400 | 2.3972 | 0.7281 | 0.6785 |
136
+ | 0.0133 | 18.06 | 6500 | 2.5105 | 0.7205 | 0.6705 |
137
+ | 0.0133 | 18.33 | 6600 | 2.3785 | 0.7295 | 0.6775 |
138
+ | 0.0133 | 18.61 | 6700 | 2.4367 | 0.7220 | 0.6676 |
139
+ | 0.0133 | 18.89 | 6800 | 2.4496 | 0.7255 | 0.6690 |
140
+ | 0.0133 | 19.17 | 6900 | 2.4133 | 0.7279 | 0.6720 |
141
+ | 0.0097 | 19.44 | 7000 | 2.5588 | 0.7140 | 0.6652 |
142
+ | 0.0097 | 19.72 | 7100 | 2.4906 | 0.7210 | 0.6656 |
143
+ | 0.0097 | 20.0 | 7200 | 2.5187 | 0.7199 | 0.6619 |
144
+ | 0.0097 | 20.28 | 7300 | 2.4627 | 0.7254 | 0.6686 |
145
+ | 0.0097 | 20.56 | 7400 | 2.5543 | 0.7187 | 0.6615 |
146
+ | 0.0096 | 20.83 | 7500 | 2.4262 | 0.7259 | 0.6676 |
147
+ | 0.0096 | 21.11 | 7600 | 2.4768 | 0.7256 | 0.6699 |
148
+ | 0.0096 | 21.39 | 7700 | 2.5336 | 0.7220 | 0.6724 |
149
+ | 0.0096 | 21.67 | 7800 | 2.5221 | 0.7240 | 0.6703 |
150
+ | 0.0096 | 21.94 | 7900 | 2.5008 | 0.7269 | 0.6712 |
151
+ | 0.0086 | 22.22 | 8000 | 2.4998 | 0.7278 | 0.6703 |
152
+ | 0.0086 | 22.5 | 8100 | 2.4611 | 0.7319 | 0.6842 |
153
+ | 0.0086 | 22.78 | 8200 | 2.5119 | 0.7313 | 0.6832 |
154
+ | 0.0086 | 23.06 | 8300 | 2.4329 | 0.7300 | 0.6764 |
155
+ | 0.0086 | 23.33 | 8400 | 2.4080 | 0.7317 | 0.6822 |
156
+ | 0.007 | 23.61 | 8500 | 2.4054 | 0.7313 | 0.6802 |
157
+ | 0.007 | 23.89 | 8600 | 2.4345 | 0.7334 | 0.6851 |
158
+ | 0.007 | 24.17 | 8700 | 2.4735 | 0.7326 | 0.6865 |
159
+ | 0.007 | 24.44 | 8800 | 2.4718 | 0.7313 | 0.6843 |
160
+ | 0.007 | 24.72 | 8900 | 2.4391 | 0.7328 | 0.6818 |
161
+ | 0.0029 | 25.0 | 9000 | 2.5152 | 0.7290 | 0.6869 |
162
+ | 0.0029 | 25.28 | 9100 | 2.4609 | 0.7365 | 0.6908 |
163
+ | 0.0029 | 25.56 | 9200 | 2.4717 | 0.7359 | 0.6932 |
164
+ | 0.0029 | 25.83 | 9300 | 2.5283 | 0.7337 | 0.6881 |
165
+ | 0.0029 | 26.11 | 9400 | 2.4831 | 0.7342 | 0.6866 |
166
+ | 0.0026 | 26.39 | 9500 | 2.5291 | 0.7325 | 0.6861 |
167
+ | 0.0026 | 26.67 | 9600 | 2.5201 | 0.7344 | 0.6855 |
168
+ | 0.0026 | 26.94 | 9700 | 2.5496 | 0.7322 | 0.6857 |
169
+ | 0.0026 | 27.22 | 9800 | 2.5302 | 0.7332 | 0.6853 |
170
+ | 0.0026 | 27.5 | 9900 | 2.5388 | 0.7329 | 0.6871 |
171
+ | 0.0025 | 27.78 | 10000 | 2.5210 | 0.7326 | 0.6845 |
172
+ | 0.0025 | 28.06 | 10100 | 2.5482 | 0.7319 | 0.6841 |
173
+ | 0.0025 | 28.33 | 10200 | 2.5628 | 0.7315 | 0.6853 |
174
+ | 0.0025 | 28.61 | 10300 | 2.5439 | 0.7341 | 0.6870 |
175
+ | 0.0025 | 28.89 | 10400 | 2.5241 | 0.7356 | 0.6875 |
176
+ | 0.001 | 29.17 | 10500 | 2.5238 | 0.7354 | 0.6873 |
177
+ | 0.001 | 29.44 | 10600 | 2.5186 | 0.7362 | 0.6880 |
178
+ | 0.001 | 29.72 | 10700 | 2.5237 | 0.7360 | 0.6880 |
179
+ | 0.001 | 30.0 | 10800 | 2.5243 | 0.7361 | 0.6881 |
180
 
181
 
182
  ### Framework versions
eval_results_ml.json CHANGED
@@ -1 +1 @@
1
- {"ru-RU": {"f1": 0.010316925076793538, "accuracy": 0.04942837928715535}, "cy-GB": {"f1": 0.009031079552289031, "accuracy": 0.03597848016139879}, "en-US": {"f1": 0.004128358654351474, "accuracy": 0.021856086079354405}, "tl-PH": {"f1": 0.007033744185653525, "accuracy": 0.04909213180901143}, "bn-BD": {"f1": 0.01064684437896273, "accuracy": 0.04572965702757229}, "pl-PL": {"f1": 0.010264168909410978, "accuracy": 0.05917955615332885}, "fa-IR": {"f1": 0.009904069834589222, "accuracy": 0.05413584398117014}, "ro-RO": {"f1": 0.0082767370311412, "accuracy": 0.04942837928715535}, "kn-IN": {"f1": 0.011624510132884028, "accuracy": 0.04707464694014795}, "es-ES": {"f1": 0.006931920058950065, "accuracy": 0.04942837928715535}, "fi-FI": {"f1": 0.008348889025429634, "accuracy": 0.05279085406859448}, "el-GR": {"f1": 0.013950351638227847, "accuracy": 0.05211835911230666}, "ar-SA": {"f1": 0.010864946698961918, "accuracy": 0.050773369199731}, "ca-ES": {"f1": 0.006624775227252109, "accuracy": 0.05346334902488231}, "sl-SL": {"f1": 0.00669486702190452, "accuracy": 0.04942837928715535}, "hu-HU": {"f1": 0.007341933853776979, "accuracy": 0.05211835911230666}, "sq-AL": {"f1": 0.006698035828942186, "accuracy": 0.05379959650302623}, "pt-PT": {"f1": 0.009876686308811096, "accuracy": 0.05279085406859448}, "hi-IN": {"f1": 0.013358473858025266, "accuracy": 0.05615332885003362}, "am-ET": {"f1": 0.011571610890102892, "accuracy": 0.04909213180901143}, "ml-IN": {"f1": 0.009399478462437673, "accuracy": 0.04741089441829186}, "jv-ID": {"f1": 0.007928378619948176, "accuracy": 0.05211835911230666}, "tr-TR": {"f1": 0.007740517852818087, "accuracy": 0.05178211163416274}, "vi-VN": {"f1": 0.011817855833325643, "accuracy": 0.04808338937457969}, "he-IL": {"f1": 0.00956928578215271, "accuracy": 0.05245460659045057}, "my-MM": {"f1": 0.010786182254414464, "accuracy": 0.06186953597848016}, "mn-MN": {"f1": 0.010524399932849935, "accuracy": 0.04472091459314055}, "ja-JP": {"f1": 0.011610784087114788, "accuracy": 0.0652320107599193}, "is-IS": {"f1": 0.008242528109904796, "accuracy": 0.05917955615332885}, "id-ID": {"f1": 0.013556971091917974, "accuracy": 0.04236718224613315}, "sv-SE": {"f1": 0.008868076660263171, "accuracy": 0.04404841963685272}, "nb-NO": {"f1": 0.009948873549432316, "accuracy": 0.05850706119704102}, "da-DK": {"f1": 0.006963028671915196, "accuracy": 0.04640215198386012}, "te-IN": {"f1": 0.008827314588716275, "accuracy": 0.05413584398117014}, "ta-IN": {"f1": 0.010181200766674517, "accuracy": 0.0531271015467384}, "de-DE": {"f1": 0.009820927979154084, "accuracy": 0.05682582380632145}, "ms-MY": {"f1": 0.008695116790145493, "accuracy": 0.04976462676529926}, "az-AZ": {"f1": 0.006846897205354794, "accuracy": 0.04572965702757229}, "km-KH": {"f1": 0.012659606303168983, "accuracy": 0.07195696032279758}, "hy-AM": {"f1": 0.013338651577045071, "accuracy": 0.05716207128446537}, "fr-FR": {"f1": 0.005880360132106054, "accuracy": 0.05648957632817754}, "lv-LV": {"f1": 0.006623425374335874, "accuracy": 0.06220578345662407}, "ko-KR": {"f1": 0.008989616861369655, "accuracy": 0.0484196368527236}, "sw-KE": {"f1": 0.011598658779704799, "accuracy": 0.05514458641560188}, "ka-GE": {"f1": 0.010113270489478075, "accuracy": 0.04270342972427707}, "zh-TW": {"f1": 0.012945789025900394, "accuracy": 0.03665097511768662}, "ur-PK": {"f1": 0.010250507258275702, "accuracy": 0.05749831876260928}, "nl-NL": {"f1": 0.010128839057233111, "accuracy": 0.04707464694014795}, "it-IT": {"f1": 0.007618073321736792, "accuracy": 0.0531271015467384}, "th-TH": {"f1": 0.008082391982246246, "accuracy": 0.04404841963685272}, "zh-CN": {"f1": 0.009933305466830786, "accuracy": 0.03093476798924008}, "af-ZA": {"f1": 0.007387175615153436, "accuracy": 0.03799596503026227}, "all": {"f1": 0.009897739649780104, "accuracy": 0.05036599244736434}}
 
1
+ {"zh-CN": {"f1": 0.7634646910156971, "accuracy": 0.808338937457969}, "af-ZA": {"f1": 0.7132538836455592, "accuracy": 0.7726967047747142}, "sl-SL": {"f1": 0.6815919599392998, "accuracy": 0.7283120376597175}, "jv-ID": {"f1": 0.5042661262944395, "accuracy": 0.5622057834566241}, "ms-MY": {"f1": 0.7076965391417502, "accuracy": 0.7814391392064559}, "en-US": {"f1": 0.8492541138839934, "accuracy": 0.8850033624747814}, "pl-PL": {"f1": 0.7658905188800398, "accuracy": 0.8332212508406187}, "pt-PT": {"f1": 0.7748214581945277, "accuracy": 0.8187626092804304}, "sq-AL": {"f1": 0.6512385364922972, "accuracy": 0.7293207800941492}, "ar-SA": {"f1": 0.5950037905546635, "accuracy": 0.66408876933423}, "nl-NL": {"f1": 0.7778812586092927, "accuracy": 0.8389374579690653}, "nb-NO": {"f1": 0.7791878747868659, "accuracy": 0.8231338264963013}, "hi-IN": {"f1": 0.6619529753957635, "accuracy": 0.7380632145258911}, "am-ET": {"f1": 0.39801750136825015, "accuracy": 0.4751176866173504}, "hy-AM": {"f1": 0.6524514425641766, "accuracy": 0.7094821788836584}, "es-ES": {"f1": 0.7855956507266095, "accuracy": 0.8197713517148622}, "mn-MN": {"f1": 0.5616803093933431, "accuracy": 0.6469401479488904}, "my-MM": {"f1": 0.6284189841636294, "accuracy": 0.6987222595830531}, "id-ID": {"f1": 0.7667589389394739, "accuracy": 0.8248150638870209}, "bn-BD": {"f1": 0.5976275362376169, "accuracy": 0.6849361129791527}, "ml-IN": {"f1": 0.6599482579585687, "accuracy": 0.7256220578345662}, "kn-IN": {"f1": 0.6064156821788045, "accuracy": 0.6684599865501009}, "th-TH": {"f1": 0.7256521121455951, "accuracy": 0.7642905178211163}, "te-IN": {"f1": 0.5833162050913214, "accuracy": 0.668123739071957}, "da-DK": {"f1": 0.7583186176075081, "accuracy": 0.8227975790181573}, "ko-KR": {"f1": 0.6690864516544772, "accuracy": 0.7175521183591123}, "de-DE": {"f1": 0.7950178636361679, "accuracy": 0.8453261600537996}, "vi-VN": {"f1": 0.6943169086726416, "accuracy": 0.7525218560860794}, "ca-ES": {"f1": 0.7044845715136698, "accuracy": 0.7542030934767989}, "lv-LV": {"f1": 0.6759393003776176, "accuracy": 0.715198386012105}, "km-KH": {"f1": 0.5999230459937922, "accuracy": 0.660053799596503}, "ur-PK": {"f1": 0.5808396212998461, "accuracy": 0.6455951580363147}, "ro-RO": {"f1": 0.7441666946584294, "accuracy": 0.7911903160726295}, "fa-IR": {"f1": 0.7366192685998338, "accuracy": 0.7911903160726295}, "fi-FI": {"f1": 0.6733547663279966, "accuracy": 0.7427706792199058}, "tr-TR": {"f1": 0.729186622598369, "accuracy": 0.7955615332885003}, "az-AZ": {"f1": 0.6569521420870025, "accuracy": 0.7158708809683927}, "ja-JP": {"f1": 0.7684295783831104, "accuracy": 0.8113651647612643}, "sv-SE": {"f1": 0.782019513774951, "accuracy": 0.8365837256220578}, "cy-GB": {"f1": 0.31239075783660997, "accuracy": 0.417955615332885}, "ta-IN": {"f1": 0.6494363690911867, "accuracy": 0.7098184263618023}, "he-IL": {"f1": 0.6839618968239004, "accuracy": 0.7552118359112306}, "it-IT": {"f1": 0.751320651617522, "accuracy": 0.8100201748486886}, "ka-GE": {"f1": 0.5926929810384952, "accuracy": 0.640551445864156}, "ru-RU": {"f1": 0.7615343987482663, "accuracy": 0.8032952252858103}, "el-GR": {"f1": 0.7183647189599724, "accuracy": 0.7760591795561533}, "hu-HU": {"f1": 0.707958439982561, "accuracy": 0.7794216543375925}, "fr-FR": {"f1": 0.779806731815328, "accuracy": 0.8275050437121722}, "is-IS": {"f1": 0.5763500866282868, "accuracy": 0.6691324815063887}, "tl-PH": {"f1": 0.5531019350487393, "accuracy": 0.648285137861466}, "sw-KE": {"f1": 0.5448600851818804, "accuracy": 0.6193678547410895}, "zh-TW": {"f1": 0.7582629150324649, "accuracy": 0.7790854068594486}, "all": {"f1": 0.6851210924217023, "accuracy": 0.7366018312554964}}
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a490c74c8fa60f3d998b40cb3d0965de9486ccc82f24e737ec749868531382a
3
  size 1115491954
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5668eb9820da86cdde746b80dd4b6efcd3be5d8d44eff56f0bf84fe6688faa3
3
  size 1115491954
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ca2e7e08d9378a8f8f565ebecbbcb3c08196c1868f81b9348b03cd1b51aed05d
3
- size 4600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3e32e48b2407cc75242b20a8317df8576dc5126028283d1c681247efe33ce91
3
+ size 4536