--- base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only library_name: transformers license: mit metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: scenario-NON-KD-PO-COPY-CDF-CL-D2_data-cl-cardiff_cl_only66 results: [] --- # scenario-NON-KD-PO-COPY-CDF-CL-D2_data-cl-cardiff_cl_only66 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.9979 - Accuracy: 0.4498 - F1: 0.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0870 | 250 | 1.2493 | 0.4568 | 0.4501 | | 0.812 | 2.1739 | 500 | 1.5854 | 0.4637 | 0.4628 | | 0.812 | 3.2609 | 750 | 1.8772 | 0.4614 | 0.4605 | | 0.4271 | 4.3478 | 1000 | 2.3694 | 0.4414 | 0.4339 | | 0.4271 | 5.4348 | 1250 | 2.6689 | 0.4537 | 0.4473 | | 0.1992 | 6.5217 | 1500 | 3.0050 | 0.4537 | 0.4527 | | 0.1992 | 7.6087 | 1750 | 3.1201 | 0.4468 | 0.4406 | | 0.1147 | 8.6957 | 2000 | 3.9025 | 0.4360 | 0.4298 | | 0.1147 | 9.7826 | 2250 | 4.0949 | 0.4390 | 0.4331 | | 0.0816 | 10.8696 | 2500 | 4.3006 | 0.4306 | 0.4218 | | 0.0816 | 11.9565 | 2750 | 4.5881 | 0.4606 | 0.4569 | | 0.0558 | 13.0435 | 3000 | 4.4255 | 0.4576 | 0.4577 | | 0.0558 | 14.1304 | 3250 | 5.1150 | 0.4606 | 0.4600 | | 0.0388 | 15.2174 | 3500 | 4.6378 | 0.4568 | 0.4571 | | 0.0388 | 16.3043 | 3750 | 5.2331 | 0.4498 | 0.4458 | | 0.0269 | 17.3913 | 4000 | 5.3200 | 0.4491 | 0.4481 | | 0.0269 | 18.4783 | 4250 | 5.2543 | 0.4599 | 0.4583 | | 0.0175 | 19.5652 | 4500 | 5.3747 | 0.4552 | 0.4548 | | 0.0175 | 20.6522 | 4750 | 5.4521 | 0.4460 | 0.4448 | | 0.0181 | 21.7391 | 5000 | 5.3489 | 0.4606 | 0.4604 | | 0.0181 | 22.8261 | 5250 | 5.8017 | 0.4552 | 0.4543 | | 0.0093 | 23.9130 | 5500 | 5.6669 | 0.4560 | 0.4560 | | 0.0093 | 25.0 | 5750 | 5.5959 | 0.4529 | 0.4517 | | 0.0076 | 26.0870 | 6000 | 5.8141 | 0.4576 | 0.4554 | | 0.0076 | 27.1739 | 6250 | 5.8656 | 0.4560 | 0.4556 | | 0.006 | 28.2609 | 6500 | 5.9365 | 0.4583 | 0.4577 | | 0.006 | 29.3478 | 6750 | 5.9979 | 0.4498 | 0.4497 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1