--- base_model: haryoaw/scenario-MDBT-TCR-MSV-CL datasets: - massive library_name: transformers license: mit metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: scenario-NON-KD-PO-COPY-D2_data-AmazonScience_massive_all_1_144 results: [] --- # scenario-NON-KD-PO-COPY-D2_data-AmazonScience_massive_all_1_144 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR-MSV-CL](https://huggingface.co/haryoaw/scenario-MDBT-TCR-MSV-CL) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.5665 - Accuracy: 0.8558 - F1: 0.8311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:------:|:---------------:|:--------:|:------:| | 0.5779 | 0.2672 | 5000 | 0.7006 | 0.8215 | 0.7800 | | 0.4401 | 0.5344 | 10000 | 0.6600 | 0.8367 | 0.8068 | | 0.3571 | 0.8017 | 15000 | 0.6767 | 0.8420 | 0.8071 | | 0.2321 | 1.0689 | 20000 | 0.7530 | 0.8447 | 0.8130 | | 0.216 | 1.3361 | 25000 | 0.7689 | 0.8438 | 0.8194 | | 0.2181 | 1.6033 | 30000 | 0.7638 | 0.8471 | 0.8226 | | 0.2032 | 1.8706 | 35000 | 0.7350 | 0.8514 | 0.8280 | | 0.1469 | 2.1378 | 40000 | 0.8351 | 0.8493 | 0.8240 | | 0.1467 | 2.4050 | 45000 | 0.8268 | 0.8528 | 0.8282 | | 0.1486 | 2.6722 | 50000 | 0.8476 | 0.8514 | 0.8299 | | 0.1479 | 2.9394 | 55000 | 0.8659 | 0.8525 | 0.8308 | | 0.1067 | 3.2067 | 60000 | 1.0128 | 0.8449 | 0.8221 | | 0.103 | 3.4739 | 65000 | 0.9880 | 0.8515 | 0.8268 | | 0.1118 | 3.7411 | 70000 | 0.9170 | 0.8539 | 0.8299 | | 0.0911 | 4.0083 | 75000 | 1.0024 | 0.8516 | 0.8287 | | 0.077 | 4.2756 | 80000 | 1.0851 | 0.8512 | 0.8301 | | 0.0813 | 4.5428 | 85000 | 1.0700 | 0.8526 | 0.8337 | | 0.0803 | 4.8100 | 90000 | 1.0729 | 0.8540 | 0.8309 | | 0.0553 | 5.0772 | 95000 | 1.1523 | 0.8521 | 0.8297 | | 0.0601 | 5.3444 | 100000 | 1.1660 | 0.8537 | 0.8309 | | 0.0546 | 5.6117 | 105000 | 1.2625 | 0.8524 | 0.8287 | | 0.0541 | 5.8789 | 110000 | 1.2396 | 0.8510 | 0.8307 | | 0.0447 | 6.1461 | 115000 | 1.3191 | 0.8519 | 0.8285 | | 0.0501 | 6.4133 | 120000 | 1.2660 | 0.8523 | 0.8267 | | 0.0471 | 6.6806 | 125000 | 1.3370 | 0.8522 | 0.8273 | | 0.0455 | 6.9478 | 130000 | 1.3123 | 0.8524 | 0.8255 | | 0.0319 | 7.2150 | 135000 | 1.3950 | 0.8549 | 0.8314 | | 0.0359 | 7.4822 | 140000 | 1.4211 | 0.8531 | 0.8293 | | 0.0377 | 7.7495 | 145000 | 1.4256 | 0.8532 | 0.8271 | | 0.0255 | 8.0167 | 150000 | 1.4738 | 0.8537 | 0.8300 | | 0.0229 | 8.2839 | 155000 | 1.4912 | 0.8562 | 0.8319 | | 0.0216 | 8.5511 | 160000 | 1.4886 | 0.8573 | 0.8335 | | 0.0236 | 8.8183 | 165000 | 1.4929 | 0.8554 | 0.8304 | | 0.0161 | 9.0856 | 170000 | 1.5159 | 0.8569 | 0.8331 | | 0.0146 | 9.3528 | 175000 | 1.5538 | 0.8568 | 0.8324 | | 0.0175 | 9.6200 | 180000 | 1.5709 | 0.8554 | 0.8301 | | 0.0204 | 9.8872 | 185000 | 1.5665 | 0.8558 | 0.8311 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1