--- base_model: microsoft/mdeberta-v3-base library_name: transformers license: mit metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only44 results: [] --- # scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only44 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.2603 - Accuracy: 0.3657 - F1: 0.3633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0870 | 250 | 1.3365 | 0.3519 | 0.3479 | | 0.9017 | 2.1739 | 500 | 1.9777 | 0.3565 | 0.3508 | | 0.9017 | 3.2609 | 750 | 2.9438 | 0.3542 | 0.3298 | | 0.3023 | 4.3478 | 1000 | 3.1702 | 0.3611 | 0.3489 | | 0.3023 | 5.4348 | 1250 | 3.4689 | 0.3534 | 0.3522 | | 0.1011 | 6.5217 | 1500 | 4.0537 | 0.3627 | 0.3608 | | 0.1011 | 7.6087 | 1750 | 4.5352 | 0.3573 | 0.3504 | | 0.0549 | 8.6957 | 2000 | 4.5030 | 0.3495 | 0.3449 | | 0.0549 | 9.7826 | 2250 | 4.6084 | 0.3519 | 0.3479 | | 0.0339 | 10.8696 | 2500 | 4.7223 | 0.3565 | 0.3505 | | 0.0339 | 11.9565 | 2750 | 4.9936 | 0.3565 | 0.3518 | | 0.0232 | 13.0435 | 3000 | 4.5828 | 0.3449 | 0.3352 | | 0.0232 | 14.1304 | 3250 | 5.0265 | 0.3565 | 0.3543 | | 0.0224 | 15.2174 | 3500 | 5.2273 | 0.3627 | 0.3580 | | 0.0224 | 16.3043 | 3750 | 5.2708 | 0.3611 | 0.3516 | | 0.0156 | 17.3913 | 4000 | 5.6845 | 0.3511 | 0.3469 | | 0.0156 | 18.4783 | 4250 | 5.5643 | 0.3603 | 0.3537 | | 0.0081 | 19.5652 | 4500 | 5.9288 | 0.3519 | 0.3372 | | 0.0081 | 20.6522 | 4750 | 5.9406 | 0.3611 | 0.3564 | | 0.0034 | 21.7391 | 5000 | 5.9909 | 0.3534 | 0.3519 | | 0.0034 | 22.8261 | 5250 | 6.1283 | 0.3611 | 0.3562 | | 0.0017 | 23.9130 | 5500 | 6.1721 | 0.3688 | 0.3668 | | 0.0017 | 25.0 | 5750 | 6.2167 | 0.3596 | 0.3581 | | 0.0019 | 26.0870 | 6000 | 6.2126 | 0.3627 | 0.3596 | | 0.0019 | 27.1739 | 6250 | 6.2446 | 0.3634 | 0.3616 | | 0.0014 | 28.2609 | 6500 | 6.2484 | 0.3650 | 0.3624 | | 0.0014 | 29.3478 | 6750 | 6.2603 | 0.3657 | 0.3633 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1